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Abstract

In this paper we propose an appearance-based approach

to recognition of facial Action Units (AUs) and their tempo-

ral segments in frontal-view face videos. Non-rigid regis-

tration using free-form deformations is used to determine

motion in the face region of an input video. The extracted

motion fields are then used to derive motion histogram de-

scriptors. Per AU, a combination of ensemble learners and

Hidden Markov Models detects the presence of the AU in

question and its temporal segment in each frame of an input

sequence. When tested for recognition of all 27 lower and

upper face AUs, occurring alone or in combination in 264

sequences from the MMI facial expression database, an av-

erage sequence classification rate of 94.3% was achieved.

1. Introduction

Successful automatic analysis of human facial behaviour

cues is an important step towards a more natural interac-

tion between humans and computers. The current meth-

ods of interaction rely on the use of input devices such as

keyboards and mice for issuing explicit commands. How-

ever, a significant part of human-to-human communication

relies on the use of other channels, such as facial expres-

sions, body gestures, etc. Enabling computers to understand

these messages and adapt the interaction accordingly (e.g.

in terms of the user’s mood) would likely make the commu-

nication more natural, efficient, persuasive and trustworthy
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[16]. The most important signals through which nonverbal

communication occurs are facial expressions [4][5].

Most facial expression recognition systems (FERS) aim

to recognise prototypical expressions of six universal basic

emotions (surprise, anger, happiness, sadness, fear and dis-

gust), as proposed by Ekman and Friesen [4]. For a survey

of such FERS, the reader is referred to [16], [19] and [24].

This categorical representation can be quite useful and in-

tuitive, but it has some important downsides. For one, the

categories form only a subset of the total range of possible

affect displays and classification is therefore often unnatu-

ral. Boredom or interest, for instance, do not seem to fit well

in any of the emotion categories. Also, there is no straight-

forward way of representing the intensity of the emotions.

A different method of categorising facial signals relies

on the detection of atomic facial signals (such as frowning,

smiling, blinking, etc.) and does not attempt an interpreta-

tion of these muscular activities. This interpretation is in-

stead relegated to higher-order systems. The most widely

used facial signal taxonomy developed for this goal is called

the Facial Action Coding System (FACS). FACS was pro-

posed by Ekman and Friesen in 1978 and revised (and sim-

plified) in 2002 [5]. FACS classifies atomic facial signals

into Action Units (AUs) according to the facial muscles that

cause them. It defines 9 upper face AUs and 18 lower face

AUs. It also defines 20 Action Descriptors for eye and head

position. FACS also defines the temporal segments of neu-

tral, onset, apex and offset of each AU display. AUs are

considered to be the smallest visible facial movements and

are independent of age, sex, culture, etc. The aim of this

work is to detect all upper and lower face AUs and their

temporal segments in each frame of an input video.

Previous FERS can also be categorised in terms of

used features.Approaches that use geometric features usu-

ally detect sets of fiducial facial points or fit a face mesh.

These points or shapes are then tracked throughout the

video and their relative and absolute position, mutual spa-

tial position, speed, acceleration, etc., are used for recog-

nition. Appearance-based features concern motion and tex-
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ture changes (deformations of the skin) such as wrinkles,

bulges and furrows. Surveys of the various approaches can

be found in [13] and [19].

A geometric approach that also attempts to automatically

detect temporal segments of AUs is the work of Valstar &

Pantic [20] [21]. They locate and track 20 facial fiducial

points and extract a set of spatio-temporal features from the

trajectories. Then, SVMs are combined with an HMM to

classify each frame into one of the temporal segments. Us-

ing only the movement of 20 feature points makes it difficult

to detect certain AUs that do not lead to a clear movement

of these points, such as AU 11, 14, 17, 28. On the other

hand, these AUs are typical for facial expressions of emo-

tions such as sadness (see EMFACS [5]), and for expres-

sions of more complex mental states including puzzlement

and disagreement [6], which are of immense importance if

the goal is to realise human-centred adaptive interfaces. Our

appearance-based approach is capable of detecting the fur-

rows and wrinkles associated with these AUs and is there-

fore better equipped to recognise them.

Earlier systems using appearance-based features have

used optical flow [1], active appearance models [12], Gabor

wavelets [2][3][9] and temporal templates [22]. Bartlett et

al. [2][3] have tried different methods such as optical flow,

Gabor wavelets and others. They report that using Gabor

wavelets renders the best results [13]. In [19] and [25] a

combination of geometric features (parametric descriptions

of facial components) and appearance-based features (Ga-

bor wavelets) was proposed and they claim that the geo-

metric features outperform the appearance-based ones, yet

using both yields the best results.

Those works that aim at recognition of AUs of the

FACS system recognise only subsets of up to 20 AUs

[2][3][19][22][25]. Also, none of the appearance-based

approaches classifies the AUs’ temporal segments (neu-

tral, onset, apex, offset). In contrast to these past efforts

in the field, in this paper we present a novel approach to

appearance-based analysis of facial expressions that recog-

nises all 27 AUs and their temporal segments defined by the

FACS system. Except of geometric-feature-based methods

proposed in [14] [15] [20], none of the existing systems at-

tains automatic recognition of AUs temporal segments.To

the best of our knowledge, the presented system is the first

appearance-based approach that can achieve such a com-

plete analysis of the AUs displayed in an input face video.

It is also the very first effort to model changes in facial ex-

pression by using a non-rigid registration method.

2. Methodology

Fig. 1 gives an overview of the complete system. In the

preprocessing phase, the face is located in the first frame of

the sequence and head motion and inter-subject differences

are suppressed by rigid registration. Next, non-rigid reg-

istration is used to estimate the remaining motion caused

by facial expressions in each frame relative to the previ-

ous frame. For each AU, a quadtree decomposition [7] is

defined based on a separate training set such as to identify

interesting face regions related to that AU. In the regions de-

termined by this decomposition, orientation histogram fea-

ture descriptors are extracted. These descriptors are used in

the classification part of the system, where a combined Gen-

tleBoost classifier and a Hidden Markov Model (HMM) are

used to classify each frame in terms of AUs and their tem-

poral segments. In the remainder of this section the details

of each processing phase are described.

2.1. Rigid registration

In order to locate the face in the first frame of the se-

quence, we assume the face is in a near-frontal position in

that frame and use the fully automatic face and facial point

detection algorithm proposed in [23]. This algorithm uses

an adapted version of the Viola-Jones face detector to lo-

cate the face. 20 facial characteristic points are detected by

using Gabor-feature-based boosted classifiers.

To suppress inter-sequence and intra-sequence variations

(such as respectively facial shape differences and rigid head

motion throughout the sequence), registration techniques

are applied to find a displacement field T that registers each

frame to a neutral, expressionless reference frame. This reg-

istration consists of two parts:

T = Tinter ◦ Tintra (1)

The intra-subject displacement field Tintra is modelled

as a simple affine registration. More specifically, the facial

part of each frame in the sequence is registered to the facial

part of the first frame, using the squared sum of differences

(SSD) of the grey level values as a distance metric, to sup-

press minor head motions.

The inter-subject displacement field Tinter is again mod-

elled as an affine registration. A subset of 10 of the 20 facial

points detected earlier in the first frame that are stable (i.e.,

their location is mostly unaffected by facial expressions) is

registered to a predefined reference set of facial points. The

first frame of the sequence is assumed to be expressionless.

The displacement field Tinter is applied to the entire image

sequence to eliminate inter-subject differences.

2.2. Non­rigid registration

After preprocessing of each video sequence, we estimate

the motion field Mt due to facial expressions between con-

secutive frames t − 1 and t. We use an adapted version of

the technique developed by Rueckert et al. [18], which uses

a free-form deformation (FFD) model based on b-splines as

described in [11]. This method was originally used to reg-

ister breast MR images, where the breast undergoes local

shape changes as a result of breathing and patient motion.



Figure 1: Outline of the proposed method

find the 20 facial feature points in the first frame of the sequence

find Tinter (affine transformation to reference facial points) and apply it to the entire sequence

foreach frame t do

find Tintra (affine transformation to frame 1) and apply it

initialise the control point lattice Φ0

foreach control point density d do

calculate the gradient vector of the cost function C in terms of Φd: ∇C =
δC(Φd)

δΦd

while ||∇C|| > ǫ do

recalculate the control point positions Φd = Φd + µ ∇C

||∇C||

recalculate the gradient vector ∇C

end

increase the density of the control point lattice, adding new points to Φd+1 from Φd by b-spline interpolation

end

use b-spline interpolation to derive Mt from Φ

end

Table 1: The registration algorithm. ǫ is a stopping criterion and µ is the step size in the recalculation of control point

positions. Both are experimentally determined.

To estimate Mt, a lattice of control points is overlaid on

the face box in frame t. These control points are then moved

to find the optimal alignment between frame t and frame t−
1. Next, cubic b-splines are used to interpolate the motion

field in between the control points, resulting in a smooth

and C2-continuous deformation. The advantage of using b-

splines is that they have local support (the interpolation is

only affected by the location of control points in the direct

neighbourhood), so that incremental transformations can be

computed efficiently.

Let Ωt = {(x, y)|0 <= x <= X, 0 <= y <= Y } rep-

resent the part of frame t containing the face (after applying
Tinter and Tintra to the sequence). Let Φ be an nx x ny

lattice of control points φi,j overlaid on Ωt, with uniform

spacing δ. In addition, for a point in Ωt at location (x, y),
let φu,v be the control point at location (x′, y′) that satisfies
the following conditions:

x′ < x < x′ + δ, y′ < y < y′ + δ (2)

The control points are displaced such that a cost func-

tion C describing the alignment of the images is minimised

according to the algorithm displayed in Table 1. Rueckert

et al. [18] use normalised mutual information as the im-

age alignment criterion. However, in the simple 2D low-

resolution case considered in this paper, not enough sample

data is available to make a good estimate of the image prob-

ability density function from the joint histograms. There-

fore, we use the sum of squared differences (SSD) as the

image alignment criterion. Then, to find the new position of

the point at location (x, y), we use a b-spline interpolation
between it’s 16 closest neighbouring control points, which

gives us the displacement field Mt (depicting the motion

between frame t and t − 1) as

Mt(x, y) =
3∑

k=0

3∑

l=0

Bk(a)Bl(b)φ(u+k−1),(v+l−1), (3)

where a = x − x′, b = y − y′ and Bn is the nth basis

function of the uniform cubic b-spline, i.e.:

B0(a) = (−a3 + 3a2 − 3a + 1)/6,

B1(a) = (3a3 + 6a2 + 4)/6,

B2(a) = (−3a3 + 3a2 + 3a + 1)/6,

B3(a) = a3/6.

To speed up the process, a coarse-to-fine search is used,

where the density of the control point lattice is increased

at each iteration (the location of new control points is de-

termined by the b-spline interpolation). To prevent folding
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Figure 2: An illustration of the non-rigid registration pro-

cess. (a) and (b): parts of frames t−1 and t, (c): t deformed

by Mt, (d): visualization of Mt

of the control points (where one control point is moved be-

yond an adjacent one, leading to corruption in the image),

the maximum displacement of control points cannot exceed

the spacing of the lattice at that iteration. The algorithm for

finding the optimal transformation is outlined in Table 1.

Mt gives us a motion field depicting the facial motion be-

tween frame t − 1 and t, from which orientation histogram

features will be extracted.

Since the amount of motion between consecutive frames

is usually small and may not provide enough information

for AU detection, we use a temporal sliding window con-

taining n frames wherein the motion is simply summed. A

sliding window of size n for the current frame tc gives the

following transformation :

Mn
t =

tc+n/2−1∑

t=tc−n/2

Mt (4)

In any given frame, each AU can be in one of four dif-

ferent temporal segments: neutral (inactive), onset, apex,

or offset. Since the system only looks at motion between

successive frames, there is no point in trying to detect the

neutral and apex activation levels (where there is no mo-

tion). Therefore, two GentleBoost classifiers are trained per

AU: one to detect the onset and another to detect the offset.

Different AUs have different onset and offset durations,

therefore we consider several sizes of the sliding window

n. The onset of AU 45 (blink), for instance, has an average

duration of 2.4 frames (in our data set). Conversely, the

offset of AU 12 (smile) lasts 15.4 frames on average. A

window of 2 frames is well-suited to find the onset of AU

45, but larger windows can make it harder to detect. Thus,

several sizes of the window, ranging from 2 to 20 frames,

are tested. A window size of 20 frames is large enough to

encompass 96.4% of all segments in our data set.

2.3. Feature Extraction

The face region in each frame of an input image se-

quence is divided into sub-regions and for each sub-region

an orientation histogram of 8 directions, the divergence, the

(a) (b) (c) (d) (e) (f)

Figure 3: Quadtree decompositions: (a,b,c) Onset of AU

12(smile); (d,e,f) Onset of AU 46L(left eye wink). Shown

for each AU are the three projections Pmag (a,d), Ptx (b,e),

Pty (c,f), as well as the resulting quadtree decompositions.

curl, and the motion magnitude are calculated, resulting in

11 features per sub-region. Some AUs are very much alike

in appearance but differ greatly in the temporal domain. For

instance, AU 43 (close and open eyes) looks exactly like AU

45 (blink) but lasts significantly longer. Therefore, we also

use a number of temporal regions to extract features. To

decide where to extract features, we first select the set of

all sliding windows Θ in a labelled training set that show a

specific AU and a specific temporal segment. Then, three

projections of this set are made showing the motion magni-

tude, the motion over time in the x-direction, and the motion

over time in the y-direction:

Pmag(x, y) =
∑

θ∈Θ

∑

t∈θ

ut(x, y)2 + vt(x, y)2, (5)

Ptx(t, x) =
∑

θ∈Θ

∑

y

ut(x, y)2, (6)

Pty(t, y) =
∑

θ∈Θ

∑

x

vt(x, y)2, (7)

where ut(x, y) and vt(x, y) are the components of the mo-

tion vector at location (x, y) of frame t in window θ. Since
any classification algorithm can only handle a limited num-

ber of features, we aim to allocate the amount of features

we can use such that unimportant areas are less covered

than important ones. The projections mentioned show us

exactly where there occurs much motion for a particular AU

and temporal segment and where there is less. Quadtree de-

compositions were introduced in 1974 by Finkel & Bentley

[7] and are an efficient and simple method to partition a

2D image. We use these to partition the regions so that ar-

eas showing much motion are divided in a large number of

smaller sub-regions, while those showing little motion are

divided into a small number of large sub-regions. Examples

of motion magnitude images and resulting quadtree decom-

positions are shown in Fig. 3.

After generating the quadtree decompositions, the fea-

tures mentioned above are extracted from each defined re-

gion in each of the projections for each frame.



2.4. Classification

To reduce the amount of features used for classification

we use the GentleBoost algorithm [8], which proved suc-

cessful for classification and feature selection in the domain

of face and object detection. For each AU and each tem-

poral segment (onset, offset), we train a dedicated one-vs-

all GentleBoost classifier. Since our data set is rather un-

balanced (over 95% of the frames depict neutral faces), to

prevent all frames being classified as neutral we initialise

the weights such that both the positive and negative classes

carry equal weight. The GentleBoost algorithm is used to

select a linear combination of features one at a time until

the classification no longer improves by adding more fea-

tures or a maximum of 100 features is reached.

Each onset/offset GentleBoost classifier returns a single

number per frame indicating the confidence that that frame

depicts the target AU in the target temporal segment. In

order to combine the onset/offset GentleBoost classifiers

into one AU recogniser, a continuous HMM is used. Us-

ing an HMM enables us to use the information contained

in the training set about the prior probabilities of each tem-

poral segment of an AU and its duration (represented in the

HMM’s transition matrix). Hence, an HMM is trained for

the classification of each AU, where the outputs of the Gen-

tleBoost classifiers are used as the emissions for the HMM.

The HMM facilitates a degree of temporal filtering. For

instance, given the training data, it’s very unlikely to have

an apex followed by a neutral phase. Also, the HMM tends

to smooth out the results of the GentleBoost classifiers (for

instance, short incorrect detections are usually filtered out).

However, it only captures the temporal dynamics to a lim-

ited degree, for example, the HMM does not explicitly pre-

vent onsets that last only one frame (even though minimum

onset durations are much longer). Using HMMs with state

duration models may help remediate this issue.

3. Experiments

The used data set consists of 264 image sequences, dis-

tributed over 15 subjects, taken from the MMI facial ex-

pression database [17] (www.mmifacedb.com). Each image

sequence depicts a near-frontal view of a face showing one

or more AUs, with some sequences exhibiting significant

out-of-image-plane head motion. The image sequences are

chosen such that each AU is present in at least 10 sequences.

The image sequences on average last 3.4 seconds and were

all manually coded for the presence of AUs. Ten-fold cross-

validation was used, where the folds were divided such that

each fold contains at least one example of each AU. Unfor-

tunately, due to this constraint, we could not perform leave-

one-out cross-validation, since some AUs are not performed

by all subjects.

Fig. 4 shows two typical results. Fig. 4a shows the op-

AU NUM WIN CR RC PR F1

1 13 20 97.73 61.54 88.89 72.73

2 11 20 97.73 66.67 80.00 72.73

4 35 20 91.29 74.29 65.00 69.33

5 12 20 93.56 66.67 38.10 48.48

6 17 20 96.21 82.35 66.67 73.68

7 11 8 92.05 54.55 27.27 36.36

9 11 20 96.97 81.82 60.00 69.23

10 14 20 97.35 78.57 73.33 75.86

11 18 12 94.70 77.78 58.33 66.67

12 17 20 93.56 82.35 50.00 62.22

13 10 12 95.45 90.00 45.00 60.00

14 16 16 91.29 75.00 38.71 51.06

15 12 8 94.70 75.00 45.00 56.25

16 14 16 96.97 85.71 66.67 75.00

17 93 16 83.71 75.27 77.78 76.50

18 22 16 91.67 63.64 50.00 56.00

20 11 20 95.08 45.45 41.67 43.48

22 11 12 93.18 72.73 34.78 47.06

23 12 16 92.42 58.33 31.82 41.18

24 18 16 89.39 61.11 34.38 44.00

25 75 8 90.53 92.00 78.41 84.66

26 33 20 95.45 81.82 81.82 81.82

27 13 20 99.62 100.00 92.86 96.30

28 14 16 93.56 92.86 44.83 60.47

28B 11 16 95.45 72.73 47.06 57.14

28T 10 12 92.42 80.00 30.77 44.44

43 15 20 95.08 60.00 56.25 58.06

45 109 8 93.56 90.83 93.40 92.09

46L 11 8 99.24 90.91 90.91 90.91

46R 11 8 99.24 81.82 100.00 90.00

avg - - 94.31 75.73 59.66 65.12

AU=Action Unit, NUM=Number of instances
WIN=Optimal window size, CR=Classification Rate
RC=Recall Rate, PR=Precision Rate, F1=F1-measure

Table 2: Results for testing the system for 27 AUs (+4 par-

tial AUs) on 264 sequences.

timal situation; the GentleBoost classifiers yield very good

results and the resulting labelling is almost perfect. In Fig.

4b a temporal window width of 2 frames was used, and we

can see that the GentleBoost classifiers yield less smooth

results. Even so, the HMM filters out the jitter effectively.

Fig. 5 shows the results for all AU classifiers for all

tested window widths. AU 46 (wink) has been split up into

46L and 46R, since the appearance differs greatly depend-

ing on which eye is used to wink. Similarly, AU 28 (lip

suck) is scored when both lips are sucked into the mouth,

and AU 28B and AU 28T are scored when only the lower or

upper lip is sucked in. The F1-measure, which is defined as

F1 =
2 · recall · precision

recall + precision
, (8)

is a good indicator of the quality of the results. Overall,

we clearly see that the F1-measure improves as the tempo-

ral window increases. Exceptions include AUs with short

durations, such as 7 (eye squint), 45 (blink), 46L, and 46R.

Table 2 gives a more in-depth look into the results of

the best classifiers (per AU, the window width that gave the

highest F1-score is mentioned). The relatively high values

of the classification rate, defined as the ratio of correct se-

quences to the total number of sequences, can be explained
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Figure 4: Example classification results. The output of the GentleBoost-classifiers are shown in the top plots. The true and

the estimated frame labels are shown in the bottom plots. n is the size of the used temporal window.

Figure 5: F1-measure per AU for different window sizes

by the high number of true negative sequences for each AU.

AUs that give the best performance are the ones that are not

easily confused with other AUs and are usually less sub-

tle, such as AU 27 (mouth stretch) and 45 (blink). The F1-

measure is reasonably high for most AUs, but there is still

room for improvement. In particular, there are many false

positives. Most of these occur in AUs that have a similar

appearance. The worst results are achieved for AUs 5 (eye

opener), 7 (eye squint) and 23 (mouth tightener). For all

three AUs, the reasons for the inaccurate performance lie

in the confusion of the target AU with other AUs. For in-

stance, the onset of AU 7 is often confused with the onset

of AU 45, the offset of AU 5 is very similar to the onset of

AU 45 (and vice versa), and AU 23 is often confused with

AU 24 (lips presser). Another cause of false positives is the

sometimes poor performance of the rigid registration meant

to stabilise the face throughout the sequence. Out-of-image-

plane head motions for instance, are not handled very well.

As a result, many classifiers will classify remaining rigid

face motions as AU activations. One can see clearly from

the results that AUs with shorter durations such as AU 45

benefit from a smaller window size, whereas most others

perform best with the largest window size tested.

We were also interested in the timings of the temporal

segment detections with respect to the timings delimited by

the ground truth. This test was run using the optimal win-

dow widths as summarised in Table 2. Only sequences that

were correctly classified were considered in this test. Four

different temporal segment transitions can be detected, neu-

tral → onset, onset → apex, apex → offset, and offset →
neutral. Fig. 6 shows the average absolute frame deviations

per AU and temporal segment transition. The overall aver-

age deviation is 2.46 frames. 44.12% of the detections are

early and 38.18% are late. The most likely cause of late

detection is that most AUs start and end in a very subtle

manner, visible to the human eye but not sufficiently pro-

nounced to be detected by the system. Early detections usu-

ally occur when a larger temporal window width is used,

where the AU’s segment in question is already visible in the

later frames of the window, but it is not actually occurring at

the frame under consideration (this can also be seen in Fig.

4a). In general, AUs of shorter duration also show smaller

deviations. Also, the transitions that score badly are usually

subtle ones. The high deviations for apex → offset in AUs

6 (cheek raiser and lid compressor) and 7 (eye squint) can

be explained by considering that these transitions are first

only slightly visible in the higher cheek region before be-

coming readily apparent in the motion of the eyelids. Since



Figure 6: Average detection offsets per AU and temporal segment transition.

the eyelid motion is much clearer, our method targets that

motion and misses the cheek raising in the start of the tran-

sition. Similarly, the offset → neutral transition in AU 14

(lip corner dimpler) has almost all of the motion in the first

few frames and then continues very slowly and subtly. Our

method picks up only the first few frames of this transition.

We also performed a test on the Cohn-Kanade (CK) data

set [10], arguably the most often used data set in the field.

This data set consists of 500 image sequences over 100 sub-

jects. We only tested the system on those AUs for which

more than ten examples existed in the data set, resulting in

20 AUs in 143 sequences. The data set does not contain off-

sets; the sequences are cut in the middle of apex segments.

The image sequences are therefore a lot shorter than in the

MMI data set; on average 0.8 seconds versus 3.4 seconds.

The 10-fold cross-validation results are shown in Table 3.

As a reference, the F1-scores for the tests done on the MMI

data set are repeated. The results achieved for the CK data

set are in general better than those achieved for the MMI

data set. One of the reasons is that out-of-image-plane head

motions are rare in the CK data set. Exceptions are AUs 16

(lower lip depressor) and 26 (jaw drop). An explanation for

the differences in the results lies in the differences in ground

truth labelling. More specifically, in the CK database, trace

activations (FACS intensity A) were also coded, especially

in AU 26, whereas in the MMI data set only AUs of FACS

intensity B and higher were considered. Also contributing

to the differences is the higher co-occurrence of AU acti-

vations in the CK data set, making it harder to distinguish

individual AUs. Another difference between the results is

that for the CK data set, lower window sizes are selected

than for the MMI data set. This is due to the CK sequences

ending at the apex of the expression, meaning there are no

offset segments. This means that no GentleBoost classifiers

could be trained for the detection of offsets and the HMM

classification relies solely on the onset detections. Since on-

sets are generally shorter than offsets, an increased window

size does not benefit the classification as much.

A cross-database test was also performed, training on the

MMI data set and testing on the CK data set. The results are

AU NUM WIN CR RC PR F1 F M

1

1 61 2 88.81 86.89 86.89 86.89 72.73
2 39 4 94.41 92.31 87.80 90.00 72.73
4 57 20 74.83 85.96 63.64 73.13 69.33
5 29 2 92.31 75.86 84.62 80.00 48.48
6 19 16 94.41 84.21 76.19 80.00 73.68
7 25 16 71.33 72.00 34.62 46.75 36.36
9 19 8 93.01 89.47 68.00 77.27 69.23
10 15 16 89.51 46.67 50.00 48.28 75.86
11 12 4 88.81 50.00 37.50 42.86 66.67
12 20 8 95.10 90.00 78.26 83.72 62.22
14 10 8 93.01 33.33 42.86 37.50 51.06
15 19 8 92.31 68.42 72.22 70.27 56.25
16 11 2 89.51 27.27 30.00 28.57 75.00
17 51 4 83.92 72.55 80.43 76.29 76.50
20 34 20 90.91 73.53 86.21 79.37 43.48
24 17 4 90.21 70.59 57.14 63.16 44.00
25 82 2 95.10 92.68 98.70 95.60 84.66
26 20 16 75.52 30.00 22.22 25.53 81.82
27 22 8 95.80 95.45 80.77 87.50 96.30
45 27 2 92.31 81.48 78.57 80.00 92.09

avg - - 89.06 70.93 65.83 67.63 67.42

AU=Action Unit, NUM=Number of instances, WIN=Optimal window size
CR=Classification Rate, RC=Recall Rate, PR=Precision Rate

F1=F1-measure, F M

1
=F1-measure on MMI data set

Table 3: Results for testing the system for 20 AUs on 143

sequences of the Cohn-Kanade data set

MMI→CK MMI →MMI CK→ CK

Classification Rate 85.75% 91.57% 88.53%

Recall Rate 51.30% 72.48% 68.51%

Precision Rate 68.89% 47.99% 69.48%

F1-measure 53.04% 55.88% 68.19%

MMI→CK: trained on MMI data set, tested on CK data set
MMI→MMI: trained on MMI data set, tested on MMI data set
CK→CK: trained on CK data set, tested on CK data set
All three are average results of 20 AUs with window size n = 20 frames

Table 4: Results for cross database testing

shown in Table 4. Due to space constraints, only average

results are shown. The tests were run on those AUs avail-

able in both data sets using a temporal window size of 20

frames. The average result is slightly lower than the result

for training and testing on the MMI data set, but this is to

be expected given the different coding styles and other dif-

ferences between the data sets.



4. Conclusion and Future Work

In this paper we have used non-rigid registration using

free-form deformations to model facial motion in frontal

face image sequences. From this motion, motion orien-

tation histograms were extracted as feature descriptors to

train a classification system for the automatic frame-by-

frame recognition of AUs and their temporal dynamics us-

ing a combination of ensemble learning and HMMs. To

the best of our knowledge, this is the first appearance-based

facial expression recognition system that can detect all 27

AUs and their temporal segments. On average, the system

achieved a 76% recall and 60% precision rate when tested

on the MMI facial expression database. For each correctly

detected temporal segment transition, the mean of the off-

set between the actual and the predicted time of its occur-

rence is 2.46 frames. For the Cohn-Kanade database, the

system achieved on average a 71% recall and 66% precision

rate. The proposed system still suffers from the detection of

many false positives, mainly due to confusion between AUs

that are very similar in appearance. These AUs, though very

similar in appearance, differ in the temporal domain. In fu-

ture work we will look at employing HMMs with explicit

state duration models.
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