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Abstract—Viewers’ preference for multimedia selection de-
pends highly on their emotional experience. In this paper, we
present an emotion detection method for music videos using
central and peripheral nervous system physiological signals as
well as multimedia content analysis. A set of 40 music clips
eliciting a broad range of emotions were first selected. After ex-
tracting the one minute long emotional highlight of each video,
they were shown to 32 participants while their physiological
responses were recorded. Participants self-reported their felt
emotions after watching each clip by means of arousal, va-
lence, dominance, and liking ratings. The physiological signals
included electroencephalogram, galvanic skin response, respi-
ration pattern, skin temperature, electromyograms and blood
volume pulse using plethysmograph. Emotional features were
extracted from the signals and the multimedia content. The
emotional features were used to train a linear ridge regressor
to detect emotions for each participant using a leave-one-out
cross-validation strategy. The performance of the personalized
emotion detection is shown to be significantly superior to a
random regressor.

I. INTRODUCTION

Emotional preference is one of the most important factors

in multimedia content selection and consumption. Knowing

a viewer’s emotion while watching videos helps recom-

mendation systems to better understand his/her preferences.

A retrieval or recommendation system can use multimedia

content analysis and a user’s previous emotional feedback

to estimate the emotion which is likely to be elicited in

response to a new video. An alternative to explicitly receiving

the emotional feedback can be using non-verbal behavior

cues to detect emotions. Non-verbal cues are valued for

not interrupting users for explicit feedback or self-reporting

phases. Peripheral and central physiological responses are

among the cues that have been used for emotion detection

[11], [9], [13], [2]. Moreover, self-reporting emotions is

not always an easy task for an ordinary viewer. The self-

reporting becomes even more complicated in the case of

using dimensional models of emotion.

Arousal, valence, dominance and liking ratings were used

in this study for emotional representation of music videos.

Although the most straightforward way to represent an

emotion is to use discrete labels such as fear, anxiety and

joy, label-based representations suffer from several disadvan-

tages. The main disadvantage is that labels are not cross-

lingual: they do not necessarily exist or have the same

meaning in different languages. e.g. “disgust“ does not have

Mohammad Soleymani and Thierry Pun are with the Computer Vi-
sion and Multimedia Laboratory, University of Geneva, Switzerland.
mohammad.soleymani@unige.ch

Sander Koelstra and Ioannis Patras are with the School of Computer
Science and Electronic Engineering, Queen Mary University of London.
sander.koelstra@eecs.qmul.ac.uk

an exact equivalent in Polish [20]. The emotional labels

can also be misinterpreted in a single culture. In addition,

emotions are continuous phenomena rather than discrete ones

and labels are unable to define the strength of an emotion.

Psychologists therefore represent emotions or feelings in an

n-dimensional space (generally 2- or 3-dimensional). The

most famous such space, which is used in the present study

and originates from cognitive theory, is the 3D valence-

arousal-dominance space [21]. The valence scale ranges

from unpleasant to pleasant. The arousal scale ranges from

passive to active or excited. The dominance scale ranges from

submissive (or ”without control”) to dominant (or ”in control,

empowered”). Fontaine et al. [5] added predictability to these

three dimensions. In this study, predictability self-reporting

in response to music videos was found too complex and

hence not used.

There have been a large number of published works in the

domain of emotion recognition from physiological signals

[11], [9], [13], [2]. Of these studies, only a few achieved

notable results using video stimuli. Lisetti and Nasoz used

physiological responses to recognize emotions in response

to movie scenes [13]. The movie scenes were selected to

elicit six emotions, namely sadness, amusement, fear, anger,

frustration and surprise. They achieved a high recognition

rate of 84% for the recognition of these six emotions.

However, the classification was based on the analysis of the

signals in response to pre-selected segments in the shown

video known to be related to highly emotional events.

Some efforts have been made towards implicit affective

tagging of multimedia content. Kierkels et al. [8] proposed

a method for personalized affective tagging of multimedia

using peripheral physiological signals. Valence and arousal

levels of participants’ emotions when watching videos were

computed from physiological responses using linear regres-

sion [24]. Quantized arousal and valence levels for a clip

were then mapped to emotion labels. This mapping enabled

the retrieval of video clips based on keyword queries. So far

this novel method achieved low precision.

In a more recent study, Koelstra e al. [10] recorded EEG

and peripheral physiological signals from six participants in

response to 20 music videos. Participants reported their emo-

tions using arousal, valence, and like/disliking rating. The

responses of each participant was classified into two classes

of low/high arousal, low/high liking rating, and low/high

valence. The average classification rates varied between 55%

and 58% which is slightly above random level. The low

classification rates were caused by the the low number of

the samples per participant. We hence increased the number

of samples to 40 videos per participant in the current study.



In this paper, we used music videos as stimuli and recorded

users’ emotional responses to a selected set of music videos.

First, a relatively large music video dataset was gathered.

For each video, a one-minute highlight was then extracted

automatically for use in the experiment. The selection of

videos was narrowed down to 40 clips to be shown during

the experiments. 32 participants volunteered to participate

in the experiment and their physiological signals (EEG

and peripheral physiological signals) were recorded as they

watched the 40 selected music videos. Participants rated each

video in terms of arousal, valence, liking and dominance. For

each video, arousal, valence dominance and liking ratings

were estimated from peripheral and central physiological

as well as multimedia content features using linear ridge

regression and a leave-one-out cross validation strategy.

The rest of the paper is organized as follows. The ex-

periment and apparatus are explained in Section II. The

methodology including features and regression method are

presented in Section III. Experimental results are then given

in Section IV. The paper is finally concluded in Section V.

II. EXPERIMENTAL PROTOCOL AND APPARATUS

A. Music clips

120 music videos were initially selected with the goal of

having videos with emotions that are uniformly covering

the arousal-valence space. 60 of these were selected man-

ually and 60 were selected using the last.fm website for

music recommendation by searching on a list of emotional

keywords. The music videos were then segmented into one

minute segments with 55 seconds overlap between segments.

Arousal and valence of the minute long segments were

computed using the method proposed by Soleymani et al.

[25] which is trained on movie scenes. In this method a

linear regression was used to compute arousal for each shot

in movies. Informative features for arousal estimation include

loudness and energy of the audio signals, motion component,

visual excitement and shot duration. The same approach was

used to compute valence. Other content features such as

color variance and key lighting that have been shown to

be correlated with valence [29] were utilized for valence

estimation. The emotional highlight score of the i-th segment

ei was computed using the following equation:

ei =
√

a2
i
+ v2

i
(1)

The arousal, ai, and valence, vi, ranged between -10 and

10. Therefore, a smaller emotional highlight score (ei) is

closer to the neutral state. For each video, the one minute

long segment with the highest emotional highlight score was

chosen to be extracted for the experiment. For a few clips,

the automatic affective highlight detection was manually

overridden. This was done only for songs with segments

that are particularly characteristic of the song, well-known

to the public, and most likely to elicit emotional reactions.

Given the 120 one-minute music video segments, the final

selection of 40 videos used in the experiment was made on

the basis of subjective ratings. Each video was rated by 14-16

volunteers using an online self-assesment tool. Valence and

arousal was rated on a 9-point discrete scale. To maximize

the strength of elicited emotions, we selected those videos

that had the strongest volunteer ratings and at the same time

a small variation. For each video we calculated a normalized

arousal and valence score by taking the mean rating divided

by the standard deviation. Then, for each quadrant in the

normalized valence-arousal space, we selected the 10 videos

that lie closest to the extreme corner of the quadrant.

B. Apparatus

The experiments were performed in the laboratory envi-

ronment with controlled illumination. EEG and peripheral

physiological signals were recorded using a Biosemi Ac-

tiveTwo system1. Stimuli were presented using a dedicated

stimulus PC that sent synchronization markers directly to the

recording PC. For presentation of the stimuli and recording

the users’ ratings, the ”Presentation” software by Neurobe-

havioral systems2 was used.

Physiological signals were recorded at a sampling rate of

512 Hz using 32 active AgCl electrodes (placed accord-

ing to the international 10-20 system). Thirteen channels

of peripheral physiological signals were also recorded. 32

Healthy participants (50% female), aged between 19 and

37 (mean age 26.9), participated in the experiment. Prior

to the experiment, each participant signed a consent form

and filled out a questionnaire. Next, they were given a set

of instructions to read informing them of the experiment

protocol and the meaning of the different scales used for

self-assessment. An experimenter was also present there to

answer any questions. When the instructions were clear to

the participant, he/she was led into the experiment room. The

experiment started with a 2 minute rest period. Then the 40

videos were presented in 40 trials, each consisting of the

following steps. First, the current trial number was shown

for two seconds to inform the participants of their progress.

then, a five seconds baseline recording (display of a fixation

cross) was shown. This was followed by a one minute long

music video.

Fig. 1. A participant shortly before the experiment.

At the end of each trial, participants self-assessed their

emotions reporting the level of arousal, valence, dominance

1http://www.biosemi.com
2http://www.neurobs.com



and liking rating. The liking scale asks for participants’

personal appreciation of the video (that is, how much they

liked it). It should not be confused with the valence scale.

This measure inquires about the participants’ tastes, not their

feelings. For example, it is possible to like videos that make

one feel sad or angry. Self-assessment manikins (SAM) [16]

were used to visualize the scales. For the liking scale, thumbs

down/thumbs up symbols were used. The manikins were

displayed in the center of the screen with the numbers 1-9

printed below. Participants moved the mouse horizontally and

clicked to indicate their self-assessment level. Fig. 1 shows

a participant shortly before the start of the experiment.

III. METHODOLOGY

A. Physiological features

Most of the current theories of emotion [3], [22] agree

that physiological activity is an important component of

emotional experience. For instance several studies have

demonstrated the existence of specific physiological patterns

associated with basic emotions [4].

The following peripheral nervous system signals were

recorded: GSR, respiration amplitude, skin temperature, elec-

trocardiogram, blood volume pulse (BVP) by plethysmo-

graph, electromyograms of Zygomaticus and Trapezius mus-

cles, and electrooculogram (EOG). GSR provides a measure

of the resistance of the skin by positioning two electrodes

on the distal phalanges of the middle and index fingers. This

resistance decreases due to an increase of perspiration, which

usually occurs when one is experiencing emotions such as

stress or surprise. Moreover, Lang et al. discovered that the

mean value of the GSR is related to the level of arousal [11].

A plethysmograph measures blood volume in the partici-

pant’s thumb. This measurement can also be used to compute

the heart rate (HR) by identification of local maxima (i.e.

heart beats), inter-beat periods, and heart rate variability

(HRV). Blood pressure and heart rate variability correlate

with emotions, since stress can increase blood pressure.

Pleasantness of stimuli can increase peak heart rate response

[11]. In addition to the HR and HRV features, spectral

features derived from HRV were shown to be a useful

feature in emotion assessment [15]. Electrocardiogram ac-

tivities were also detectable from the electrode recording

EMG signal from Trapezius muscle. The electrocardiogram

(ECG) was extracted and HR and HR related features were

extracted. The ECG features are in part overlapping with

plethysmograph features.

Skin temperature was also recorded since it varies with dif-

ferent emotions. The respiration amplitude was measured by

a respiration belt around the abdomen of the participant. Slow

respiration is linked to relaxation while irregular rhythm,

quick variations, and cessation of respiration correspond to

higher arousal levels.

Regarding the EMG signals, the Trapezius muscle (neck)

activity was recorded to investigate possible head movements

during music listening. The activity of the Zygomaticus

major was also monitored, since this muscle is activated

when the participant laughs or smiles. Most of the power

TABLE I

THE FEATURES EXTRACTED FROM EEG AND PHYSIOLOGICAL SIGNALS.

Physiological
signal

Extracted features

GSR average skin resistance, average of derivative, av-
erage of derivative for negative values only (aver-
age decrease rate during decay time), proportion of
negative samples in the derivative vs. all samples,
number of local minima in the GSR signal, average
rising time of the GSR signal, 10 spectral power in
the bands from 0 to 2.4Hz, zero crossing rate of
Skin conductance slow response (SCSR) (0 to 0.2
Hz), zero crossing rate of Skin conductance very
slow response (SCVSR) (0 to 0.08 Hz), SCSR and
SCVSR mean of peaks magnitude

BVP average blood volume pulse, average HR, aver-
age and standard deviation of inter beat intervals
(HRV), energy ratio between the frequency bands
[0.04, 0.15]Hz and [0.15, 0.5]Hz, spectral power
in the bands ([0.1-0.2]Hz, [0.2-0.3]Hz, [0.3-0.4]Hz),
low frequency [0.01,0.08]Hz, medium frequency
[0.08,0.15]Hz and high frequency [0.15,0.5]Hz com-
ponents of HRV power spectrum.

ECG average and standard deviation of HR and its deriva-
tive, HRV, average of inter beat intervals, energy
ratio between the frequency bands [0.04, 0.15]Hz
and [0.15, 0.5]Hz, low frequency [0.01,0.08]Hz,
medium frequency [0.08,0.15]Hz and high frequency
[0.15,0.5]Hz components of HRV power spectrum,
Poincaré analysis features [9], average beat interval
change between per respiratory cycle [18]

Respiration band energy ratio (difference between the logarithm
of energy between the lower (0.05-0.25Hz) and the
higher (0.25-5Hz) bands), average respiration sig-
nal, mean of derivative (variation of the respiration
signal), standard deviation, range or greatest breath,
breathing rhythm (spectral centroid), breathing rate,
10 spectral power in the bands from 0 to 2.4Hz,
average peak to peak time, median peak to peak time

Skin temp. average, average of its derivative, spectral power in
the bands ([0-0.1]Hz, [0.1-0.2]Hz)

EMG and
EOG

eye blinking rate, energy of the signal, mean and
variance of the signal

EEG theta, slow alpha, alpha, beta, and gamma Spec-
tral power for each electrode. The spectral power
asymmetry between 14 pairs of electrodes in these
frequency bands.

in the spectrum of an EMG during muscle contraction is in

the frequency range between 4 to 40 Hz. Thus, the muscle

activity features were obtained from the energy of EMG

signals in this frequency range for the different muscles. The

rate of eye blinking is another feature, which is correlated

with anxiety. Eye-blinking affects the EOG signal and results

in easily detectable peaks in that signal.

All the physiological responses were recorded at a 512 Hz

sampling rate and later down-sampled to 256 Hz to reduce

the memory and processing costs. The trend of the ECG and

GSR signals was removed by subtracting the temporal low

frequency drift. The low frequency drift was computed by

smoothing the signals on each ECG and GSR channels with

a 256 points moving average.

In total 177 features were extracted from peripheral phys-

iological responses based on the proposed features in the

literature [2], [9], [18], [30]. Details are given in Table I.



B. EEG features

EEG Signals were acquired from 32 electrodes placed on

the subjects’ scalps according to the international 10-20 sys-

tem. Signals were recorded at 512Hz and then downsampled

to 128Hz to simplify further processing. EOG was recorded

from 4 electrodes placed to the sides and above/below the

eyes, and eye artefacts were suppressed using the algorithm

proposed in [23]. Next, a band pass filter of 4-45Hz was

used to further reduce signal artefacts and remove the 50Hz

power line interference. Finally, the data was referenced to

the common average.

Power spectral density (PSD) in different frequency bands

was estimated using Welch’s method for each 60 second

trial. The frequency bands were: theta (4-8Hz), slow alpha

(8-10Hz), alpha (8-12Hz), beta (12-30Hz) and gamma (30-

45Hz). We also computed the lateralization for 14 left-right

pairs of electrodes by computing the difference in PSD for

each frequency band. The EEG feature vector is composed

of 230 features (5 × (32 channels + 14 asymmetry pairs)).

C. MCA features

Music videos were encoded into the MPEG-1 format

to extract motion vectors and I-frames for further feature

extraction. The video stream of the music clips has been

segmented at the shot level using the method proposed in

[7]. From a movie director’s point of view, lighting key [19],

[29] and color variance [29] are important tools to evoke

emotions. We therefore extracted lighting key from frames in

the HSV space by multiplying the average V-value (in HSV)

by the standard deviation of the V-values. Color variance

was obtained in the CIE LUV color space by computing the

determinant of the covariance matrix of L, U, and V.

Hanjalic and Xu [6] showed the relationship between

video rhythm and affect. The average shot change rate, and

shot length variance were extracted to characterize video

rhythm. Fast movements in scenes are also an effective factor

for evoking excitement. To measure this factor, the motion

component was computed by accumulating magnitudes of

motion vectors for all B- and P-frames.

Colors and their proportions are important parameters to

elicit emotions [28]. In order to extract color characteristics,

a 20 bin color histogram of hue and lightness values in the

HSV space was computed for each I-frame. The median of

the L value in HSL space was computed to obtain the median

lightness of a frame. Finally, visual cues representing shadow

proportion, visual excitement, grayness and details were also

determined according to the definition given in [29].

The second information stream, namely sound, also has an

important impact on affect. For example, loudness of speech

(energy) is related to evoked arousal, while rhythm and

average pitch in speech signals are related to valence [17].

The audio channels of the videos were extracted and encoded

into monophonic information (MPEG layer 3 format) at

a sampling rate of 44.1 kHz. All of the resulting audio

signals were normalized to the same amplitude range before

further processing. A total of 53 low-level audio features

were determined for each of the audio signals. These features

are commonly used in audio and speech processing and

audio classification [12], [14]. MFCC, formants and the

pitch of audio signals were extracted using the PRAAT

software package [1]. Visual features were extracted from

key frames and their average, standard deviation, skewness,

and kurtosis over each clip was computed as that clip’s

visual content features. Audio features were extracted from

non-overlapping 200ms long segments and their average and

standard deviation over each clip was computed as that

clip’s audio content features. An extensive list of the utilized

content features can be found in [25].

D. Regression

After feature extraction, the results for each of the modal-

ities was obtained using the same methodology. The goal

here is to train a regression function to map the features

to the rating given by the subjects in the experiments. We

used a basic linear ridge regression algorithm with α = 10 as

implemented in the mlpy package3. Other, more complicated

methods such as Guassian Process Regression [31] and

Relevance Vector Machine regression [26] were also tried.

Those regression methods were not found to improve the

results, possibly due to the noisy nature of the physiological

signals, leading to overfitting.

For each subject, a regressor is trained and tested using

leave-one-trial-out cross validation strategy, for which the

results are reported below. For comparison, we also present

results obtained by a random regressor and a Π-regressor.
The Π-regressor uses an estimate of the probability density

function of the ground truth ratings to generate its output.

This Π-regressor is included for comparison as the ground

truth is not uniformly distributed (see Fig. 2). These random

and Π-regressors were each run 10000 times and their error

were averaged.

IV. RESULTS

A. Rating analysis

After watching each video, participants reported their

emotion by means of continuous ratings ranging from 1 to 9.

Although they were able to choose any point on continuous

scale participants tended to click under displayed numbers

(see the red bars on Fig. 2). The blue bars on Fig. 2 show

the ratings’ histograms quantized in nine levels. From the

blue bars, we can see that the distribution of the ratings are

skewed towards higher scores.

The average ratings of the videos are shown in Fig. 3.

According to the average ratings, the videos are well cover-

ing the whole arousal and valence plane on four quadrants,

namely, low arousal high valence (LAHV), low arousal

low valence (LALV), high arousal low valence (HALV)

and high arousal high valence (HAHV). The orientation of

the triangles represents the emotional quadrant which was

expected to be felt given the ratings submitted by volunteers

using the online self-assessment tool. The results show that

the expected emotions are in strong agreement with reported

3https://mlpy.fbk.eu/
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Fig. 2. Histogram of arousal, valence, dominance and liking ratings given
to all videos by the 32 participants. The blue bars are the histogram of
the quantized ratings in nine levels.The red bars are showing the ratings
quantized in 80 levels (The quantization step is equal to 0.1).

emotions (i.e. online volunteers usually place the video in

the same quadrant as the participants in the experiment).

The average ratings for dominance ratings are also visible

in Fig. 3. The liking ratings which are encoded in colors are

visually shown to be correlated with valence.
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Fig. 3. The mean video ratings from experiment participants on the arousal-
valence plane . The orientation of the triangle indicates the quadrant for
which the video was selected by the online ratings. Liking is encoded by
color: dark red is low liking and bright yellow is high liking. Dominance is
encoded by symbol size: small symbols stand for low dominance and big
for high dominance.

In order to measure inter-annotation agreement between

different participants, we computed the pair-wise Cohen’s

kappa between self reports after quantizing the ratings into

nine levels. A very weak agreement was found on emo-

tional feedbacks with mean(κ) = 0.02 ± 0.06 for arousal,

mean(κ) = 0.08 ± 0.08 for valence, and mean(κ) =
0.05± 0.08 for liking ratings. A paired t-test was performed

on the κ values of valence ratings in comparison to liking

and arousal. The t-test results showed that on average the

agreement on valence ratings is significantly higher than

agreement on arousal (p = 2.0 × 10−20) and liking rating

(p = 4.5× 10−7).

B. Emotion detection results

TABLE II

mae (MEAN ABSOLUTE ERROR) AND ITS STANDARD DEVIATION OVER

PARTICIPANTS. mae IS THE MEAN DIFFERENCE BETWEEN THE TRUE

AND PREDICTED RATING (RATINGS ON A SCALE OF 1-9). STARS

INDICATE SIGNIFICANCE OF RESULT COMPARED TO THE Π-REGRESSOR

(**= p < .01), (*= p < .05). FOR COMPARISON, RESULTS FROM THE

RANDOM AND Π REGRESSOR ARE ALSO PRESENTED.

Arousal Valence Dominance Liking

EEG 1.53(0.40)** 1.59(0.39)** 1.53(0.49)** 1.78(0.51)**
Peripheral 1.70(0.51)* 1.81(0.41) 1.64(0.49) 1.96(0.64)
MCA 1.50(0.45)** 1.65(0.35)** 1.47(0.46)** 1.68(0.45)**

EEG/Per/MCA 1.49(0.42)** 1.56(0.36)** 1.51(0.49)** 1.66(0.46)**
EEG/MCA 1.47(0.42)** 1.55(0.39)** 1.46(0.48)** 1.62(0.45)**
EEG/Per 1.58(0.43)** 1.63(0.39)** 1.57(0.50)** 1.83(0.53)*
Per/MCA 1.53(0.52)** 1.66(0.38)** 1.50(0.46)** 1.72(0.52)**

Random
regr.

2.51(0.05) 2.58(0.05) 2.57(0.05) 2.69(0.05)

Π-regressor 2.05(0.04) 2.30(0.05) 1.99(0.04) 2.33(0.05)

Table II shows the regression mae (Mean absolute error)

for the different modalities and rating scales, with the ratings

on a continuous scale between 1 and 9. The regression results

for each modality and rating scale are better than the ran-

dom and Π-regressors. We performed a two-sided repeated

samples t-test on the mae-scores per subject between each

modality and the Π-regressor. The mae-scores are always

significantly higher than Π-regression for the EEG and

MCA modalities. For the peripheral physiological signals,

the results are only significant for the arousal modality.

This indicates information regarding a subject’s emotional

state exists in the physiological measurements. It also seems

evidence to predict the user’s emotional reaction to a video

is available in the content features extracted from the videos.

The differences between modalities are less clear, but overall

regression from MCA performs best, followed by EEG.

We have also performed feature-level fusion of the differ-

ent modalities. Although for valence and liking, better results

are attained, they are not significantly better.

Emotion estimation from MCA features is advantageous

since there will not be any need to to attach electrodes and

sensors to the users. Emotion detection from physiological

modalities are valued not to interrupt users for self-reports.

However, if the accuracy of emotion detection using physi-

ological signals is not going to be superior to MCA or high

enough to replace the self reports their usage will be under

question. Therefore, the current emotion detection method

from peripheral and central nervous physiological signals

needs improvement to be used in a real application.

V. CONCLUSION AND PERSPECTIVES

A video data set consisting of music videos spanning the

whole spectrum of emotions was collected. The physiolog-



ical responses of 32 participants were then recorded while

watching the collected emotional music videos. Participants

continuously rated video clips by means of arousal, valence,

dominance, and liking ratings. The inter annotation agree-

ment measures show that there was slightly more agreement

on valence ratings in comparison to arousal and like/dislike

ratings. Features that have correlation with emotions were

then extracted from both central and peripheral physiological

signals as well as multimedia content. A regression method

for continuous emotional characterization of music videos

using central and peripheral physiological responses as well

as content analysis was applied on the feature set. The

performance of the emotion detection was evaluated in a

leave-one-out cross-validation strategy for each participant.

The continuous emotion detection performance was shown to

be significantly superior to random estimation. This method

can be used in the heart of music video recommendation

systems to improve viewers’ experience.

Tkalčič et al. [27] showed how using valence, arousal,

and dominance scores of images improved the performance

of their image recommender. In our future work, we will

take a similar approach for music videos to study the effect

of using emotional scores in a music video recommendation

system. Another topic of interest is to investigate whether it

is possible to train a generalized, inter-subject regressor.
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[9] J. Kim and E. André. Emotion recognition based on physiological
changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell.,
30(12):2067–2083, 2008.

[10] S. Koelstra, A. Yazdani, M. Soleymani, C. Mühl, J.-S. Lee, A. Nijholt,
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