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Abstract —In this work we propose a dynamic-texture-based approach to the recognition of facial Action Units (AUs, atomic facial
gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face
videos. Two approaches to modelling the dynamics and the appearance in the face region of an input video are compared: an extended
version of Motion History Images and a novel method based on Non-rigid Registration using Free-Form Deformations (FFDs). The
extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain.
Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models
detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of
all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the
proposed method achieved an average event recognition accuracy of 89.2% for the MHI method and of 94.3% for the FFD method.
The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the
performance on spontaneous expressions in the Sensitive Atrtificial Listener dataset.

Index Terms —facial image analysis, facial expression, dynamic texture, motion
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« This is the second DT-based method for AU recognition
proposed. We compare our method to the earlier method
[36], and show a clear improvement in performance.

An early version of this work appeared in [16]. The outline
of the paper is as follows. Section 2 provides an overview
of the related research. Section 3 presents the two utilized
approaches to modelling dynamics and the appearance in the
Fig. 1: Apex phases of 8 AUs of the FACS system.  face region of an input video (MHI and FFD) and explains the
methodology used to detect AUs and their temporal segments.
Section 4 describes the utilized datasets, the evaluatialy s

to fit well in any of the basic emotion categories. Moreovepnq discusses the results. Section 5 concludes the paper.
in everyday life, these prototypic expressions occur redbt

ra_lrely; usua]ly, emotions are d|spla¥eq by subtle Chan9932 STATE OF THE ART
discrete facial features, such as raising of the eyebrows in ]
surprise. To detect such subtlety of human emotions and,4rd Facial Features
general, to convey the information on facial expressions Existing approaches to facial expression analysis can be di
aforementioned applications, automatic recognition ofra¢ vided into geometric and appearance-based approaches. Dy-
facial signals, such as the AUs of the FACS system, is neededmic texture recognition can be seen as a generalization
FACS was proposed by Ekman and Friesen in 1978 anfl appearance-based approaches. Geometric featureslénclu
revised in 2002 [10]. FACS classifies atomic facial signate i shapes and positions of face components, as well as the
Action Units (AUs) according to the facial muscles that @udocation of facial feature points (such as the corners of the
them. It defines 9 upper face AUs and 18 lower face AUsjouth). Often, the position and shape of these components
which are considered to be the smallest visually disceenitdnd/or fiducial points are detected in the first frame and
facial movements. It also defines 20 Action Descriptors fahen tracked throughout the sequence. On the other hand,
eye and head position. FACS provides the rules both for Ahppearance-based methods rely on skin motion and texture
intensity scoring and for recognition of temporal segmenthanges (deformations of the skin) such as wrinkles, bulges
(onset, apex and offset) of AUs in a face video. and furrows. Both approaches have advantages and disad-
Most of the research on automatic AU recognition has begantages. Geometric features only consider the motion of a
based on analysis of static images (e.g. [26]) or individualmber of points, so one ignores much information present in
frames of an image sequence (e.g. [3, 4, 18, 17]). Sorie skin texture changes. On the other hand, appearaned-bas
research efforts toward using dynamic textures (DT) foralac methods may be more susceptible to changes in illumination
expression recognition (e.g. [36, 43]) and toward explicénd differences between individuals. See [25, 40] for an
coding of AU dynamics (e.g. with respect to AUs temporadxtensive overview of facial expression recognition mdto
segments, like in [23, 35], or with respect to temporal darre
tion of different AUs like in [33]) have been proposed as welR.1.1 Geometric-feature-based approaches

However, most of these previously proposed systems resegnpproaches that use only geometric features mostly rely on
either the six basic emotions (e.g. [43]) or only subsetshef tdetecting sets of fiducial facial points (e.g. [26, 23, 3%]),
27 defined AUs. Except for geometric-feature-based methastshnected face mesh or active shape model (e.g. [13, 7,5, 17]
proposed in [22, 23, 35], none of the existing systems &taior face component shape parametrization (e.g. [31]). Next,
automatic recognition of AUs temporal segments. Also, pkcethe points or shapes are tracked throughout the video and the
for the method based on Motion History Images proposegilized features are their relative and absolute positioatual
in [36], none of the past works attempted automatic Aldpatial position, speed, acceleration, etc. A geometgpcagrh
recognition using of a DT-based approach. that attempts to automatically detect temporal segments of
In this work we present a novel DT-based approach ®Us is the work of Pantic and colleagues [22, 23, 35]. They
automatic facial expression analysis in terms of all 27 AUscate and track a number of facial fiducial points and extrac
and their temporal segments. The novelties in this work are; set of spatio-temporal features from the trajectorie§2 2
« We propose a new set of adaptive and dynamic textuaed [23], they use a rule-based approach to detect AUs and
features for representing facial changes that are basedtioeir temporal segments, while in [35] they use a combimatio
Free-form Deformations (FFD). of SVMs and HMMs to do so. Using only the movement
« We introduce a novel non-uniform decomposition of thef a number of feature points makes it difficult to detect
facial area to facial regions within which features areertain AUs, such as AU 11 (nasolabial furrow deepener), 14
extracted. This is based on a quadtree decompositionouth corner dimpler), 17 (chin raiser), 28 (inward sugkin
of motion images, and results in more features beiraf the lips) (see also Fig. 1), the activation of which is not
allocated to areas that are important for recognition afpparent from movements of facial points but rather from
an AU and less features being allocated to other areaghanges in skin texture. Yet, these AUs are typical for facia
« We combine a discriminative, frame-based GentleBooskpressions of emotions such as sadness (see EMFACS [10]),
classifier with a dynamic, generative HMM model forand for expressions of more complex mental states including
(temporal) AU classification in an input face video. puzzlement and disagreement [11], which are of immense
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importance if the goal is to realize human-centred, adaptieverlapping blocks distributed evenly over the face. To the
interfaces. On the contrary, our appearance-based appi®adest of our knowledge, our method is the only other DT-based
capable of detecting the furrows and wrinkles associateld wmethod for facial expression analysis proposed so far.

these AUs and is therefore better equipped to recognize.them

2.1.2 Appearance-based approaches 3 METHODOLOGY

Systems using only appearance-based features have been b 2 9ives an overview of our system. In the preprocessing
posed in e.g. [18, 3, 4, 14, 2, 20, 36]. Several research&es hRhase, the fac_e is located in the first frame qf an input V|_deo
used Gabor wavelet coefficients as features (e.g. [14, 4p, 3§nd head motion is suppressed by an affine rigid face registra
Bartlett et al. [3, 18, 4] have tried different methods suchPn- Next, non-rigid motion is estimated between conseeut
as optical flow, explicit feature measurement (i.e. length games by the use of either Non-r|g|d. Regl_stratlon using
wrinkles, degree of eye opening), ICA and the use of Gabpfee-form Deformations (FFDs) or Motion History Images
wavelets. They report that Gabor wavelets render the b&¥H!s)- For each AU, a quadtree decomposition is defined
results [18]. Other techniques used include optical flow [3§ identify face regions related to that AU. In these regjons
and Active Appearance Models [20]. Tian et al. [31, 32] use¥€ntation histogram feature descriptors are extraéigally,
combination of geometric and appearance-based featuees (& combined GentleBoost classifier and a Hidden Markov

bor wavelets). They claim that the former features outperfo Vodel (HMM) are used to classify the sequence in terms of
the latter ones, yet using both yields the best result. AUs and their temporal segments. In the remainder of this

section the details of each processing phase are described.
2.1.3 Dynamic-Texture based approaches
An emerging new method of appearance-based activity rec@t Rigid face registration

nition is known as Dynamic Texture recognition. A Dynamigy grder to locate the face in the first frame of the sequenee, w
Texture (DT) can be defined as a “spatially repetitive, timegss me the face is expressionless and in a near-frontéioposi
varying visual pattern that forms an image sequence Wiffi that frame and use the fully automatic face and facial poin
certain temporal stationarity” [6]. Typical examples of ®T getection algorithm proposed in [37]. This algorithm usas a
are smoke, fire, sea waves and talking faces. Many existiggapted version of the Viola-Jones face detector to lotate t
approaches to recognition of DTs are based on optical flgyce. 20 facial characteristic points and a facial boundiox
[28, 19]. A different approach is used in [30]. Instead Ofre detected by using Gabor-feature-based boosted @assifi
using optical flow, they use system identification techngque 1, suppress inter-sequence variations (i.e. facial shépe d
to Iearn. generative models. Recgntly, Chetverikov a”@rpétferences) and intra-sequence variations (i.e. rigid head m
[6] published an extensive overview of DT approaches. jon) registration techniques are applied to find a disgraent

The techniques applied to the DT recognition problefy|q 7 that registers each frame to a neutral reference frame,
can also be used to tackle the problem of facial expressigpie maintaining the facial expression:

recognition. Valstar et al. [36] encoded face motion into
Motion History Images. This representation shows a sequenc T =Tirer 0 Tonpra. 1)
of motion energy images superimposed in a single image,
detailing recent motion in the face. An extended version of The intra-sequence displacement fi&lg;,, is modelled as
MHI-based facial expression recognition is proposed iis tha simple affine registration. The facial part of each frame in
work as well. In this work, videos are temporally segmentgd lihe sequence is registered to the facial part of the firstdram
manually selecting the start and endpoints of an AU activatito suppress minor head motions. This is done using a gradient
and a single MHI is created from 6 frames distributed equididescent optimization, with the squared sum of differences
tantly between these points. In our implementation, an MHBSD) of the grey level values as a distance metric.
is created for a temporal window around each frame withoutThe inter-subject displacement fielf,,..,, is again mod-
any manual input. Also, while their method uses a multi€laglled as an affine registration. A subset of 9 of the 20 facial
classifier, we train separate binary classifiers for each Al apoints detected in the first frame that are stable (i.e.r foei
therefore we can detect any combination of AUs. cation is mostly unaffected by facial expressions) is rtegésd
Zhao and Pietikainen [43, 44] use volume local binarp a predefined reference set of facial points. This predéfine
patterns (LBP), a temporal extension of local binary paterset of reference points is taken from an expressionlessémag
often used in 2D texture analysis. The face is divided intf a subject that was not used in the rest of the experiments.
overlapping blocks and the extracted LBP features in eathe displacement field’;,.. is applied to the entire image
block are concatenated into a single feature vector. SVMs a@equence to eliminate inter-subject differences in festiape.
used for classification. The approach shows promisingt®sul TheT},;., andT;,.., registrations are performed separately
although only the six prototypic emotions are recognized asinceT;,;.. iS a geometric registration of two sets of fiducial
no temporal segmentation is performed. They normalize tfecial points, wherea%;,;., is an appearance-based registra-
face using the eye position in the first frame, but they ignotmn based on the minimization of the sum of squares of the
any rigid head movement that may occur during the sequeno®tion-compensated image intensities. Therefore, we oan n
In addition, instead of our learned class(AU)-specific dquesel combine the two registrations. Let us also note here, thig-in
placement method for feature extraction regions, they use fi sequence transforms (i.e., from a frame to the previous one)
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calculate create derive motion |} Trained Trair:)ed linear Tra;zed hidgeln
.| difference Motion History T uadtree combination markov model
1 | images kg Images [ representation|t ivision of features
(I;w;uit T 7} Detect facial Affine v v Y.
| image Ly feature points registration H ; Y Hi v v [ TR EEEEr—
| sequence "t inthe firstframe [ | to the first frame [ i tlése ?‘ljluad“e Ex'ggcmne”'- i || Gentieboost Hidden markov | F‘ina\.ﬁ . :
! : - . +| to partiion istogram iye| Classification model i Classification
____________ . ggg{snglt(ijon to (rimeoﬂl\:)en vector image into features FL» classification J»w |
Preprocessing i the previous | *] field ;L regions perregion  |:: | | i}
"""""""""""""""""""""""""""""" o frame

Feature extraction Classification

Non-Rigid Registration

Fig. 2: Outline of the proposed method.

ZA A ,(t+ 9 —2,t+ % —1). A binary difference image
j for the palr( + 1) is denoted withd; and is defined as

Original sequence Sequence after Sequence after 1 T t) — glx t+1
Tintra registration Tinter registration di(z,y) =0 l9(2,y,8) — g(z,y, ¢ +1)| > , (2)

0 otherwise
Fig. 3: An illustration of the rigid registration processlsA

shown are the 10 facial feature points used for registrationWhereg(, -, ¢) is framet filtered by a Gaussian filter of size
2, v is a noise threshold set to 4 (this means that two pixels

must differ 4 grey levels to be classified as differentjs a

are in general smaller and therefore more easily estimhged t binary opening filter applied to the difference image to reeno
the combined transform to a global reference frame. Howevegmaining isolated small noise spots with an area smaléer th
once estimated},., and T}.... are combined and applied® pPixels.g was varied between 0 and IPwas varied between
as a single transformation. An illustration of the two staps 1 and 20p was varied between 0 and 20. The parameters were
the used facial points is given in Fig. 3. varied on a small set of videos and the values as used above
gave the best results for recognition.

Using weighted versions of these binary difference images,

- i L _ the MHI is then defined as:
Most existing approaches base their classification on reithe

single frames or entire videos. Here, we use overlapping M! = 1max({(s +1di_g,J0<s<0-1}). (3)
sliding windows of different sizes and classify each window 0 s
in terms of depicted AUs and their temporal segments. In afjat is, the value at each pixel of the MHI is the weight of
given frame, each AU can be in one of four different tempor#he last difference image in the window that depicts motion,
segments: neutral (inactive), onset, apex, or offset.ebafit or O if the difference images do not show any motion.
AUs have different onset and offset durations. Therefore it In the original implementation by Davis [8], motion vectors
is useful to have a flexiblé (size of temporal window) and are retrieved from the MHI by simply taking the Sobel gradien
consider several sizes. The onset of AU 45(blink), for insga  Of the image. This will however only give motion vectors at
has an average duration of 2.4 frames (in the utilized despsethe borders of each grey level intensity in the image. This
On the other hand, the offset of AU 12 (smile) lasts 15Works well in the case that the MHIs show smooth and large
frames on average. A temporal window of 2 frames is welmotion, but in our case the motion is usually shorter and over
suited to find the onset of AU 45, but it is hard to dete@ smaller distance, leading to less smooth gradients in the
the onset of AU 12 using such a window. Therefore, severgiage. Applying the Sobel gradient in such a case leads to
window sizes are tested, ranging from 2 frames to 20 framé@sVery sparse motion representation. The approach taken her
96.4% of all onsets/offsets in our dataset last 20 frames igras follows. For each pixel that is not a background pixel
less, so this size suffices to easily capture most activation (i.e. pixels wherelZ{ is O since no motion was detected), we
To represent the motion in the face due to facial expressiofgarch in its vicinity for the nearest pixel of higher intiys
two different methods of Motion History Images and Non(without crossing through background pixels). The diacti
rigid registration using Free-form Deformations have bedR which a brighter pixel lies (if there is one) is the directi

3.2 Motion representation

investigated, which will now be discussed in detail. of motion in that pixel. In the case that multiple brightexgds
are found at the same distance, the pixel closest to theecentr
3.2.1 Motion History Images of gravity of those pixels is chosen. This gives us a dense and

Motion history images (MHIs) were first proposed by Davighformative representation of the occurrence and the timec

and Bobick [8]. MHIs compress the motion over a numbdlf motion. This is illustrated in Fig. 4.

of frames into a single image. This is done by layering the

thresholded differences between consecutive frames ome o¥-2-2 Non-rigid Registration using FFDs

the other. In doing so, an image is obtained that gives dihis method is an adapted version of the method proposed by

indication of the motion occurring in the observed timenfea  Rueckert et al. [29], which uses a free-form deformatior}FF
Let ¢ be the current frame and létbe the temporal window model based on b-splines. The method was originally used to

size. Then, M HI{ consists of the weighted layered binaryegister breast MR images, where the breast undergoes local

difference images for each consecutive two frarftes %,t— shape changes as a result of breathing and patient motion.
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Find the 20 facial points in the first frame of the sequence
| T Find T;n:o (affine transformation to reference facial points)
t Apply Tinter to the entire sequence
foreach framet do

Find T;,.ro (affine transformation to frame 1) and apply i
Initialize the control point latticab?_; as ®?

e
]

]

() (b) (©) foreach control point densityl do
Calculate the gradient vector of the cost function
. . . . . ~ Hd
Fig. 4: lllustration of the estimation of a motion vector el in terms ofdf_,: VO = )
from an MHI. (a): Original MHI. (b): for each pixel, the while [|[VC|| > e do ot
closest neighbouring brighter pixel is found (Wlthout G'Iﬂg Recalculate the control point positions:
background pixels). (c): This process is repeated for eaah,p ¢ | =% |+ u%
resulting in the motion vector field shown here. RecalculatevVC
end

Increase the density of the control point lattice

; 2 d+1 &d enling i ;
Let ©; denote the grey-level image of the face region at emf‘dd points to®;2, from i, by b-spline interpolation

frame t, yvhere thx,y) is the grey-level intensity at pixel Derive &s: &5 = &,_; — B,
(x,y). Given a pixel (z,y) in framet, let (Z,7) be the
unknown location of its corresponding pixel in frame- 1.
Then, the non-rigid registration method is used to estinaateFig. 5: The non-rigid registration algorithra.is a stopping
motion vector fieldF; between frames and¢ — 1, such that: criterion andy is the step size in the recalculation of control
point positions. The values for both are taken from [29].

Use b-spline interpolation to derivg, from ®s end

(ja?]): (Iay)'i'ﬁt(xvy) (4)

To estimateF;, we select al/ x V lattice ®, of control of the uniform cubic b-spline, i.e.:
points with coordinates;(u,v) in Q, evenly spaced with 3 9
spacingd. Then, non-rigid registration is used to aligh Bo(a) = (=a” +3a” = 3a +1)/6,
with Q,_+, resulting in a displaced latticé,_, = ®, + 5. Bi(a) = (3a® + 6a* 4 4)/6,

Then, F; can be derived by b-spline interpolation frodn. Bs(a) = (—3a® + 3a%> 4+ 3a+1)/6,
To estimated;_q, a cost functionC' is minimized. Rueckert By(a) = a3/6
et al. [29] use normalized mutual information as the image '
alignment criterion. However, in the 2D low-resolution €as To speed up the process, and avoid local minima, we use
considered here, not enough sample data is available to makbierarchical approach in which the lattice density is fein
a good estimate of the image probability density functiamfr doubled at every level in the hierarchy. The coarsest @it
the joint histograms. Therefore, we use the sum of squarisdplaced around the poirt= (c,,c,) at the intersection of
differences (SSD) as the image alignment criterion, i.e. : the horizontal line that connects the inner eye cornerstlaad

A vertical line passing through the tip of the nose and thereent

C(P;q) = Z(Qt(:v,y) — Q4 (2, 9))> (5) of the upper the and bottom lip. Then,

T,y (I)?:{(u,v) u € [CI—QZ:d,...,Cz—i—m:d],} ®)
The full algorithm for estimatingb;_; (and thereforeds) v € ey — 2id,..., ¢y + did]

is given in Fig. 5. We can calculaté; using b-spline interpo- where id is the distance between the eye pupils (i,

lation on ®5. consists of 35 control points). New control points are iter-
For a pixel at location(z,y), let ¢.(u,v) be the control atively added in between, until the spacing beco®esid

point with coordinatgxg, o) that is the nearest control point(approximately the size of a pupil), giving 1617 controlmsi

lower and to the left ofz, y), i.e. it satisfies: This has proven sufficient to capture most movements and
gives a good balance between accuracy and calculation speed
o < x <o +d, Yo <y <yo+d (6) Having estimated?;, we now have a motion vector field

N _ depicting the facial motion between frame- 1 and¢, from
Inaddition, let ¢5(u,v) denote the vector that displacesyhich orientation histogram features can be extracted. For
¢¢(u,v) 10 ¢r—1(u,v). Then, to derive the displacement fokeatyre extraction, we actually consider the motion vefiédd
any pixel (z,y), we use a b-spline interpolation between it§equence”? over a sliding window of sizé around frame.

16 closest neighbouring control points (see Fig. 6). Thiegi  Fig. 7 shows an example of the MHI and FFD methods. Fig.
us the estimate of the displacement fiéid 7(a) and 7(b) show the first and last frame of the sequence.
3 3 Fig. 7(c) shows the resulting MHM/?, whered is set such
2 _ _ _ as to include the entire sequence. It is quite easy for humans
Fi(@,y) ZZBk(a)Bl(b)¢6(u+ folusl=1).(0) to recognize the face motion from the MHI. Fig. 7(d) shows
the motion field sequencﬁte from the FFD method applied
wherea = z — 9, b = y—1yo andB,, is then!” basis function to a rectangular grid. The face motion (Fig. 7(f)) is lessacle
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Qg = 0 0 Qo g,y = o large sub-regions. This results in an efficient allocatibthe

) : : features. We note that different features (i.e. differarddiree
Yoot et Lot decompositions) are used for the analysis of different AUs.
Y- R . RPN . Some AUs are very similar in appearance but differ greatly

. . in the temporal domain. For instance, AU 43 (closed eyes)
... S looks exactly like AU 45 (blink) but lasts significantly loeg
o z Therefore, we also use a number of temporal regions to éxtrac
features. LetO, s be the collection of all sliding windows
of size 6 around the frames depicting a particular Alin
a particular temporal segmeatin the training set. We then
use a quadtree decomposition specific to each AU and the
segments onset and offset on a set of projection®pof to
decide where to extract features to recognize the target AU
and its target temporal segment.

Three projections of each window are made showing the

motion magnitude, the motion over time in the horizontal
direction, and the motion over time in the vertical direntio

R beor(u+1,4+1)

Fig. 6: lllustration of the B-spline interpolation showiram
image ); and the control point latticeb,, as well as the
estimated ®; ; aligned with Q; ;. To estimate the new
position(z, ) of the point at(z, y), only the 16 control points
shown in a lighter, red colour are used.

Plog(@,y) = ulz,y, ) + v(x,y, )%, €)
Ptem(tax) = Zu(aj,y,t)Q, (10)

Yy
Ptey(tv 1/) = Z U(ZC, Y, t)2 (11)

1
|
1
¥

;
53

x

1
Nm

whereu(z,y,t) andv(x,y,t) are the horizontal and vertical
components of the motion vector field sequerf@% These
projections are then summed over all windowsdp ; to get
the final projections used for the quadtree decomposition:

2
."'i ,f
[0

HHH ( Pous(y) = Y Pho(x,y), (12)
(d) F? applied (e) EY applied (f) Difference 0€0,,
to a grid to first frame between (b),(e) Pga,s(tvx) _ Z Ptew(t,x), (13)
0€0,,s
. i i Ou,s
Fig. 7: Example of MHI and FFD techniques. P, (ty) = Z p&(t7y) (14)
0€0,,s

to the human eye from this visualization of the transfornf.hese three images then undergo a quadtree decomposition
However, when we transform the first frame by applyifgy to determine a set of 2D regionsz(()-, (¢, )-, and ¢, y)-

to get an estimate of the last frame, the similarity is clear &9ions) where features will be extracted. The defined pro-
shown in Fig. 7(e). In addition, one can see that between Figctions show us exactly where much motion occurs for a
7(a) and 7(b), the subject shows a slight squinting of thes ew@articular AU and a particular temporal segment and where
(AUB6). While this is invisible in the resulting MHI (Fig. 7(;  there is less motion. The quadtree decomposition algorithm

it is visible in the motion field derived from FFD (Fig. 7(d)),outlined in Fig. 8. The splitting threshold was set t00.1,

indicating that the FFD method is more sensitive to subti@eaning a region in the quadtree will be split if the region
motions than the MHI method. accounts for 10% of the total motion in the frame. This gives

a reasonable balance between having too large regionseso th
detail is lost, and too many small regions, where the feature
become less effective as facial features do no longer alfedlys
3.3.1 Quadtree Decomposition in the same region. The minimum region sizds defined to

In order to define the face sub-regions at which features whle 0.25id, whereid is the interocular distance. In other words,
be extracted, we use a quadtree decomposition. Insteadtha minimum region size is about the size of a pupil. Extragti
dividing the face region into a uniform grid (e.g. as in [43]features in smaller regions will not be very informative doe

or manually partitioning the face, a quadtree decompasitiemall variations in facial feature locations in differenbgects.

is used to divide the regions in a such a manner that aréxsme examples of motion magnitude images and the resulting
showing much motion during the activation of a specific Aluadtree decompositions are shown in Fig. 9. We can see in
are divided in a large number of smaller sub-regions, whikgg. 9(e) that for AU46R (right eye wink) most of the features
those showing little motion are divided into a small numbler avill be extracted in the eye area, where all the motion occurs

3.3 Feature Extraction
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I . : . . : AU 1 5 9 2 16 24 27
Inmallze R with a single region (the entlre_face region) onsel original | 2073 | 2013 | 1551 | 1551 | 1551 | 1650 | 1386
Definep;orar as the summed value of all pixels i onsetselected| 67 | 67 | 34 |47 |19 | 87 |12
Definer as the splitting threshold offset original | 1452 | 1815 | 1551 | 1683 | 1551 | 1749 | 1683
Defineo as the minimum size of a region offset selected| 90 85 76 86 34 86 73
while True do

foreach regionr in R do . . TABLE 1: Original number of features and number of features

Calculatep,, the summed value of all pixels in selected by GentleBoost per AU when trained on the entire

if pr <7 - Ptotar @Nd size(r) > o then
Remover from R
Split r in 4 equally sized rectangles
Add these toR

MMI dataset with a window-size of 20 frames.

end average absolute motion, the average amount of positiee (i.
end : : left, upward) motion and the average amount of negative (i.e
if no region was splithen stop

end right, downward) motion.

Fig. 8: The quadtree decomposition algorithims the thresh-
old for splitting, o is the minimum region size.

3.4 Classification

We use the GentleBoost algorithm [12] for feature selection
and classification. Advantages of GentleBoost over AdaBoos
are that it converges faster and is more reliable when gtabil

is an issue [12]. For each AU and each temporal segment
characterised by motion (i.e. onset, offset), we train a-ded
icated one-vs-all GentleBoost classifier. Since our datase
rather unbalanced (over 95% of the frames in the database
depict expressionless faces), we initialize the weightt $hat

both the positive and the negative classes carry equal weigh
This prevents that all frames are classified as neutral. The
GentleBoost algorithm is used to select a linear combinatio
of features one at a time until the classification no longer
improves by adding more features. This gives a reasonable ba
ance between speed and complexity. The number of features
(e) (f) (g) (h) selected for each classifier range between 19 and 93, with an

average of 74 features selected. Table 1 gives an overview of

Fig. 9: Quadtree decompositions: (a,b,c,d) Onset of Alde hmber of selected features for several AUs.
12(smile); (ef,g,h) Onset of AU 46R(right eye wink). Shown The first three selected features for some of the classifiers

fgr eacga'?‘u are eéf;lrsnple ffa"g_)efs (a,e) and thg three projete shown in Figures 10-11. In the images, for each feature
tions Pmay (b.f), P,"" (¢,9), P, (d.h). Overlaid on each gojacteq from thepS:; -projection, a neutral face image is
projection is the resulting quadtree decomposition. overlaid to indicate the location of the region. The selécte
features correspond reasonably well to the intuitivelyerint
o esting features/regions for each AU. TRS;;—projection is

In ©,,5, some frames also show the activation of other AU e most important (and most often selected) projectiogesin
than a. Usually, the actl\_/atl_o_n of other AUs does not OCCUNost information is available in the spatial domain. Thigl&o
frequently. enough to significantly alter the decompositiof,s reag0n why the problem of facial expression recognition
However, in some cases, AUs co-occur very frequently and 88, he solved (to a certain extent) using static images (e.g.
decomposition shows some of the motion of the co-occu_rrnr%])' However, for some AUs, the information in the spatial
AU. It may th_en happen that some features qureSpond'ngﬁ%gnitude projection is insufficient to distinguish theranfr
the co-occurring AU are then selected to classify other AUs. One example is AU 43 (closed eyes), which only

differs from AU 45 (blink) in the temporal domain. Since AU

3.3.2 Features 45 is much more common, an AU 43 detector that does not
After generating the quadtree decompositions, we extreet take the temporal domain into account would detect mang fals
features for the sliding window around each frame in thsositives. Fig. 11 shows that a temporal feature is the skcon
dataset. We consider thgz, y,t) andv(z, y,t) components most important one in the detection of the onset of AU 43. The
from £ in the sub-regions determined by the quadtree dgsature in question measures the amount of upward motion in
composition ongg’; (z,y). In each sub-region 11 features arghe eyelid area for the next 2 frames. If the depicted AU were
extracted from the components: an orientation histogra® ofAU 45, then the next 2 frames after any of the onset frames
directions, the divergence, the curl, and the motion mageit should show upward motion as the eye would be be opening

For the temporal regions determined by the decompositioagain. In AU 43 however, the next 2 frames after any of the
of Pga’s(t,x) andPt@“’S(t,y), we first determine the projec-onset frames will show no motion as the eyes will still be
tions PY.(t, ) and P, (t, y) for the test frame in question. Forclosed. Thus, the absence of upward motion in this area in a
each sub-region in the projections, we extract 3 features: tperiod of 2 frames after an onset frame is a very good way to
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0.9994
0.9975

Fig. 12: The states and transition probabilities for an HMM
trained on AU 1. Initial probabilities are denoted below the

(@) Poid: A (b) PO (c) PoLs: state names. Transitions with probability O are not shown.
divergence divergence divergence

Fig. 10: First three selected features for onset of AU 1 (innthe classification of the temporal segment for each frame in
brow raiser), window size 8, superimposed on a neutral franbe tested image sequence.
The HMM facilitates a degree of temporal filtering. For
instance, given that the input data temporal resolutiorbifp2
and given the facial anatomy rules, it is practically implolss
to have an apex followed by a neutral phase and this is
reflected in the transition probabilities. Also, the HMM
tends to smooth out the results of the GentleBoost classifier
(for instance, short incorrect detections are usually rétie
; : out). However, it only captures the temporal dynamics to a
(@) ngz,s : ' (b) PSM,S ‘1o ©) PS;;?;,S . limited d_egree, since it pper_ates under the Markov assu_nnnpti
that a signal value at timeis only dependent on the signal
value at timef — 1. For example, the HMM does not explicitly
Fig. 11: First three selected features for onset of AU 43s@ib prevent onsets that last only one frame (even though in most
eyes), window size 8, superimposed on a neutral frame. M)JS, the minimum onset duration is much longer). Yet it does

depicts the absence of upwards motion in shown y-arearepdel these dynamics implicitly through its use of trawositi

framet -+ 2. probabilities between the states.

An example of the learned transition probabilitie$or one
HMM, trained to recognize AU 1, is given in Fig. 12. The
tell apart AU 43 from AU 45 onset segments. tran§|t|on probabilities say somethlng about the statatim.

o . For instance, the transition probability faeutral — neutral

Each onset/offset GentleBoost classifier returns a smgle . . . )

S ! S_very high, since the duration of a neutral state is usually
number per frame indicating the confidence that that frame L . . .
denicts the taraet AU and the taraet temporal seament. lerord €Y long (it is as long as the video itself when the video does

P 9 9 P 9 : not contain the target AU). The normal sequence of states

to combine the onset/offset GentleBoost classifiers inte on
IS neutral — onset— apex — offset — neutral However,

AU recognizer, a continuous HMM is used. The motivatio I, L
for using an HMM is to use the knowledge that we can derivﬂe1e transition probabilities show that, although highlyikaly,

from our training set about the prior probabilities of eacbransmonsapex—> onsetor offset— apexdo occur. This is

temporal segment of an AU and its duration (represented ﬁli?llafr(;rctsepr?zr:g%eortrj]ﬂl);i d||:2|agjgsfacjl_alzgj(p;\esssgﬂmr
the HMM'’s transition matrix). Hence, an HMM is trained for y b€ ap T

e datasets, the MMI and the Cohn-Kanade dataset, contain
the classification of each AU. : '
defined b h i th recordings of acted (rather than spontaneously displayed)
HMMS are define YA ~ _{A’B’H_}' w e.reA IS ,t_ € facial expressions, occurrence of multiple apexes is ratk a
transition matrix,B is the emission matrix an is the initial

. o X unlikely. In the SAL spontaneous expression dataset on the
state p_r(_)bab|llty distribution. These are all estimatedirir other hand, multiple apexes occur quite frequently. Howeve
the training set, w_hgre the outputs of the onset- and O,ﬁsgté ecially in the MMI dataset and especially by brow actions
GentleBoost classifiers are used to calculate the emiss U1, AU2), smiles (AU12), and parting of the lips (AU25)
matrix B for the HMM by fitting a Gaussian to the Valuessome recordings seem to be capturing spontaneous (uncon-

of both outputs in any temporal state. Then, the probabiligé- v displaved) rather th | ted :
for each state can be calculated given the output of theIousy isplayed) rather than purely acted expressions.

GentleBoost classifiers in a particular frame.

The HMM has four states, one corresponding to ea
of the temporal segments. The initial probabilitiEsshow 4-1 Datasets
that the sequences in our dataset usually start in the heuirhe first dataset consists of 264 image sequences
segment (i.e. no AU is depicted), but on rare occasions tteken from the MMI facial expression database [27]
AU is already in one of the other states. Based on the initigbww.mmifacedb.com). To the best of our knowledge, this
probabilitiesIT, the transition probabilities\ and emission data is the largest freely available dataset of facial bielav
probability matrix B, the HMM decides the mostly likely recordings. Each image sequence used in this study depicts
path through the temporal segment states for the input imagenear-)frontal view of a face showing one or more AUSs.
sequence, using the standard Viterbi algorithm. This tesnl The image sequences are chosen such that all AUs under

divergence upward motion divergence

4}1 EXPERIMENTS
C
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consideration are present in at least ten of the sequences

and distributed over 15 subjects. The image sequences last Output of GentleBoost classifiers

on average 3.4 seconds and were all manually coded for the é ‘ e

presence of AUs. Ten-fold cross-validation was used, with ; ol ;.

the folds divided such that each fold contains at least one =

example of each AU. Temporal window sizes ranging from 4 §_10 SRR X

to 20 frames were all tested independently and the window Predicted labels by HMM and true labels

size that yielded the best result was chosen. truelabels| neutral | onset |  apex | offset | neutral]
To test the generalization performance of the system, we  pred.labels| neural [ onset [ apex | offset | neutral]

0 20 80

have also evaluated the proposed FFD-based method on the fromenumbar
Cohn-Kanade (CK) dataset [15], arguably the most widely (a) AU 27, 6 = 20
used dataset in the field. We only tested the system on those
AUs for which more than ten examples existed in the CK

dataset. This resulted in examples of 18 AUs shown in 143
sequences in total. The original CK dataset only has event
coding for the AUs (stating only whether an AU occurs in

the sequence, not a frame-by-frame temporal segment goding : —_—
Here, we have used frame-by-frame annotations provided by Predicted labels by HMM and true labels

Output of GentleBoost classifiers

L)
onset class. o 1
= = offset class. P FRY
- U
L ' 1
- v 3 A (M
S ) y W AN \ fi s
e L M N 1 IR
[ ] v 5 .
L 1

o

classifier output
o

Valstar& Pantic [34] based on the given event coding. truelabels| neutral | onset apex offset | neutral

Finally, we also tested the method on the SAL (Sensitive  Pred-labels| newol [onset| sex [ ofset, | peurl
Artificial Listener) dataset containing displays of spa@aus ¢ B B menumber . 2
expressions [9]. The expressions were elicited in human- (b) AU 27,60 =2

computer conversations through a 'Sensitive Atrtificial -Lis
tener’ interface. Subjects converse with one of four agataFig. 13: Example classification results. Top: The outputhef t
each having its own personality. The idea is for subjects €@entleBoost-classifiers. Bottom: The true and estimatzuhér
unintentionally and spontaneously mirror the emotionalest labels (as predicted by the HMMJ is the used temporal
of the avatars. 10 subjects were recorded for around 20 senuvindow size.
each. The speech sections were removed from the data,deavin
77 sequences that depict spontaneous facial expressimmé. F
subjects, the data has been FACS-coded on a frame-by-frame
basis, for the other 6 subjects only event coding existsceSin Results FFD method Results MHI method
) . . /AU |6 [CRIRC[PR|F || 6 [CR[RC][PR] Fi

our method requires frame-by-frame annotations to traé th— 0 T 977 615 889 271 20 [ 939 539 413 757
classifiers, we used data of 4 subjects for training and wiedes | 2 20 | 97.7| 66.7| 80.0| 727 || 20 | 96.2| 50.0| 60.0| 546

L. . 4 20 91.3| 74.3| 65.0| 69.3 20 | 76.1| 91.2| 34.1| 496
on the remaining 6 subjects. We only tested our method ¢ 5
the 10 AUs for which there were at least 5 training example g

9

20 | 93.6| 66.7| 38.1| 485| 12 | 93.6| 27.3| 25.0| 261
20 | 96.2| 82.4| 66.7| 73.7 |/ 20 | 93.6| 76.9| 41.7| 54.1
8 | 92.1| 54.6| 27.3| 364 | 8 | 86.0| 455| 13.9| 213
20 | 97.0| 81.8| 60.0| 69.2 |/ 20 | 93.6| 70.0| 33.3| 452
10 20 | 97.4| 78.6| 73.3| 759 20 | 95.8| 42.9| 66.7| 522
4.2 Results 11 12 | 94.7| 77.8| 58.3| 66.7 || 16 | 89.0| 33.3| 26.1| 29.3

. . 12 20 | 93.6| 82.4| 50.0( 622 (| 20 | 80.3| 100 | 24.6| 395
Flg. 13 shows two typlCEl' results for AU 27 (mouth stretch) 13 12 | 955| 90.0| 45.0| 600 |l 12 | 87.9| 200! 7.7 | 111

As can be seen in Fig. 13(a), the GentleBoost classifierd yig 14 || 16 | 913} 75.0) 38.7) 511 16 | 91.7| 68.8| 39.3| 50.0
. . . 15 8 94.7| 75.0| 45.0| 56.3 20 | 95.1| 25.0| 42.9| 316
gOOd results and the resultlng Iabelllng is almost perfect f 16 16 | 97.0| 857! 66.7| 750l 16 | 95.8| 57.1| 61.5| 59.3

60 = 20. For § = 2, the GentleBoost classifiers yield less 1; ig gi; ;g-g ;g-g Z)gg ig ;3-3 jg-; gg-g gg-g
smooth results (Flg 13(b)) Even SO, the HMM filters out th¢ 20 20 95.1| 455| 41.7| 435 20 | 91.3| 36.4| 20.0| 258
jitter very effectively. 22 || 12 | 93.2| 72.7| 34.8| 471 || 20 | 94.3| 36.4| 33.3| 348
23 16 92.4| 58.3| 31.8| 41.2 16 91.3| 8.3 7.7 8.0

24 || 16 | 89.4| 61.1| 34.4| 440 16 | 89.0| 20.0| 15.0| 17.1
4.2.1 Event Coding 25 || 8 | 90.5| 92.0| 78.4| 847 || 20 | 71.6| 86.7| 50.0| 634
. . 26 20 955 81.8| 81.8| 818 20 82.2| 61.3| 35.2| 44.7

Table 2 gives the results for all AUs tested with the MHI 27 || 20 | 99.6( 100 | 92.9| 963 || 20 | 95.8| 100 | 54.2| 70.3

. 28 16 93.6| 92.9| 44.8| 605 20 88.6| 429 21.4| 28.6
and the FFD technique on the MMI dataset (per AU, th{ 5g5 || 16 | 955| 72.7| 471| 571 | 12 | 928| 36.4| 250| 206

window width 8 that gave the highedt;-score is mentioned). igT ;g ggﬁll 28-8 gg-g gg-éll ;g gg-i gg-g ﬁi ii-g
The Fj-measure is a weighted mean of the precision an 4z 8 | 936 908! 934! 921!l 2 | 856! 963| 754 846

recall measures. In the manual labelling of the dataset, A iglEe g ggg g(l).g 28.09 gg.g 22 g;.g 24712 ?867 2(2)'8
46 (wink) has_ been split up into 46L and A_fGR, since th avg |- 943 757 597 51l - | 892 5241 377 406
appearance differs greatly depending on which eye is used AU = Action Unit, § = Window Size, CR = Classification Rate

to wink. Similarly, AU 28 (lip suck) is scored when both RC = Recall Rate, PR = Precision Rafé, = Fy-measure

lips are sucked into the mouth, and AU 28B and AU 28]|'_

are scored when only the lower or the upper lip is suck%dA‘BLE 2: Results for 27 AUs (30 classes) on 264 sequences

in. This gives us a total of 30 classes, based on the 27 Al jgm the MMI dataset for the MHI and the FFD method.
defined in FACS. As can be seen from Table 2, both techniques
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20 I 2 frames
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AU

Fig. 14: Fi-measure per AU for different window sizes for the FFD method

have difficulties with subtle AUs (i.e. 5 (upper lid raise¥), this issue for spontaneous expressions in Section 4.2.3 by
(eye squint), 23 (lip tightener)). These problems possitdyn incorporating the results of a facial point tracker in thgidi
from the method of extracting motion statistics over largeegistration process. However, we should note that for very
regions. If the regions are too large, these subtletiesasitye large out-of-plane rotations, affine registration is ndfisient.
lost (however, having the regions too small generates ®rrdte use of 3D models seems a promising direction. However,
relating to the rigid registration and inter-subject diffieces). they require the construction of a 3D model that might be
Possibly, geometric approaches are better equipped tdehartifficult to obtain from monocular image sequences.
these AUs (e.g. AU5, AU7), since their activation is clearly Though most AUs perform best with the largest window
observable from displacements of facial fiducial points aad size tested, it is clear from the results that AUs with shorte
averaging of the motion over regions is needed. durations such as AU 45 benefit from a smaller window size.

It is clear that, overall, the FFD technigue produces supe-Fig. 14 shows the results for all AU classifiers for all tested
rior results to those obtained for the MHI-based approachindow widths for the FFD technique. Overall, we see that
Therefore, in the remainder of this work, only the FFD-basdtle F;-measure improves as the temporal window increases.
approach is investigated further. One reason for the imferiExceptions include AUs with particularly short duratiossch
performance of the MHI-based approach is that only intgnsias 7 (eye squint), 45 (blink), 46L (left eye wink), and 46R
differences above the noise threshold are registered in thight eye wink).
MHI. For instance, if the mouth corner moves (e.g. in AU12),
only the movement of the corner of the mouth is registered 2.2 Temporal Analysis
the related MHI. More subtle and smoother motion of the skiyve were also interested in the timing of the temporal segment
(e.g., on the cheeks) is not registered in the related MH# (s@etections with respect to the timing delimited by the gbun
Fig. 7). In the FFD method however, we will see the entirguth. This test was run using the optimal window widths as
cheek deform as a result. Also, in MHIs earlier movements caimmarized in Table 2. Only sequences that were correctly
obscure later movements (e.g. in AU 28) and fast movemeaiassified in terms of AUs were considered in this test. Four
can show up as disconnected regions that do not produfifterent temporal segment transitions can be detectedtral
motion vectors (e.g. in AU 27). — onset onset— apex apex— offset andoffset— neutral

In general, the;-measure is reasonably high for most AU$ig. 15 shows the average absolute frame deviations per AU
when the FFD technique is applied, but there is still roomnd temporal segment transition. The overall average tienia
for improvement. In particular, there are many false pos#ti is 2.46 frames. 44.12% of the detections are early and 38.18%
Most of these occur in AUs that have a similar appearancgre late. The most likely cause of late detection is that most
The AUs performing below 50% are AUs 5 (upper lid raiser)aUs start and end in a very subtle manner, visible to the human
7 (eye squint), 20 (lip stretcher), 22 (lip funneller), 2% (1 eye but not sufficiently pronounced to be detected by the
tightener) and 28T (upper lip inward suck). For most of thesgstem. Early detections usually occur when a larger teaipor
AUs, the reasons for the inaccurate performance lie in th@ndow width is used, where the AU’s segment in question is
confusion of the target AU with other AUs. For instance, thalready visible in the later frames of the window, but it ig no
onset of AU7 (eye squint) is often confused with the onset attually occurring at the frame under consideration (tlais c
AUA4S5 (blink), the offset of AUS is very similar to the onset ofalso be seen in Fig. 13a). In general, AUs of shorter duration
AU45 (and vice versa), and AUs 20, 23, 24 and 28T are oftaifso show smaller deviations. Also, the transitions tharec
confused with each other since they all involve downwairshdly are usually subtle ones. The high deviationsafoex—
movement of the upper lip. offsetin AUs 6 (cheek raiser and lid compressor) and 7 (eye

Another cause of some false positives is a failure of theuint) can be explained by considering that these transiti
affine registration meant to stabilize the face throughbet tare first only slightly visible in the higher cheek region dref
sequence. Out-of-image-plane head motions, for instaficepecoming apparent in the motion of the eyelids. Since the
not handled well, result in some classifiers classifyinddrig eyelid motion is much clearer, our method targets that motio
face motions as non-rigid AU activations. We partially seldr and misses the cheek raising in the start of the transition.
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[ apex > offset
offset > neutral

Frame offset

1 2 4 5 6 7 9 10 11 12 13 147 15 16 17 18 20 22 23 24 25 26 27 28 288 28T 43 45 46L 46R avg
AU / transition

Fig. 15: Average detection offsets per AU and temporal segriransition.

- L AU [ 6 [NTJCR [ RC [ PR F
Similarly, the offset — neutral transition in AU 14 (mouth T 1218 9285 6000 75.00 | 66567
corner dimpler) has almost all of the motion in the first few 2 20 | 10 | 88.10 | 57.14 | 66.67 | 61.54
f d th . | | d btlv. O hod 6 4 28 85.71 | 85.71 | 96.77 90.91
rames and then continues very slowly and subtly. Our metho 7 a4 |7 | 5714 2286 | 6000 | 50.00
picks up only the first few frames of this transition. 10 | 8 | 13 | 66.67 | 80.00 | 52.17 | 63.16
. : 12 | 2 | 35 | 9524 | 94.87 | 100.00 | 97.37

Another way to look at the temporal analysis results is 23 | 12| 6 | 8333 | 9167 | 6471 | 75.86
to analyse them per window size and transition type. Fig. 25 | 2 |33 | 9286 | 9286 | 100.00 | 96.30
il hat. It sh th i f earlv. timel 26 | 4 |18 | 76.19 | 76.32 | 96.67 | 8529

16 illustrates that. It shows the proportion of early, tije 25 | 16 | 17 | 6429 | 5333 | 9412 | 6809
and late detections for all correctly detected transitipes avg | - [ - 80.24 [ 7348 | 8061 [ 75.52

. . AU = Action Unit, F; = F-score
window size. It also shows the mean absolute frame offset per NT = No. of training examples, CR = Classification Rate

transition and per window size (this is depicted by the narro RC = Recall Rate, PR = Precision Rafez Window Size

bar, placed on the right side of each of the main bars in the

graph). Interestingly, for theeutral — onsetand apex — TABLE 3: Results for testing the system for 10 AUs on 77
offsettransitions the most accurate results are obtained for teguences from the SAL dataset for the FFD method.

lowest window size and the results deteriorate as the window

size increases. For the other two transitions, the lowedain

sizes are actually less accurate and the best results @ie@dt results on the posed data sets (89.8% on CK and 94.3% on
at window sizes 8 and 12. This behaviour might be explainddMl). However, we achieve a satisfactory averafjescore

by a few factors. Firstly, most motion occurs in the begigninof 75.5%, which is in fact higher than for the MMI (65.1%)
of the onset and offset segments, with the endings of thased CK (72.1%) datasets. The worst performance is reported
segments containing slower, more subtle motions. Henee, for AUs 2, 7, and 10. AUs 2 and 10 are much exaggerated
transitions indicating the end of motiowor(set— apexand in posed expressions and therefore harder to detect inesubtl
offset— neutra) are detected early since the subtle motion apontaneous depictions. AU 7 is here also often confused wit
the end of the onset and offset segments remains undeteded 45, just as in the MMI dataset. The best performing
by the system. The transitions indicating the start of moticAUs are 12, 25, and 6. In fact, these AUs perform much
(neutral — onsetand apex— offse) are quite unlikely to be better than in the MMI dataset. This can be explained by
early, simply because there is no prior motion which could be fact that many more training samples were available, here
classified as the transition in question. The results chasgeindicating that more training examples can greatly benefit
the window size increases. This is due to the smoothingteffébe performance. In addition, these AUs also occur more
discussed earlier, due to which the start of motion is detkectfrequently in the test set than in the MMI case, making the tes

earlier and the end of motion is detected later. set less unbalanced compared to the other datasets. We note
that here the selected window sizes are much shorter than
4.2.3 Spontaneous Expressions for the MMI dataset. A possible explanation for this is that

sSé)_ontaneous expressions are generally less smooth arat depi

We performed tests on the SAL dataset, containing 77 ultiple apexes interleaved with onset and offset segm@sts
guences of spontaneous expressions, mostly smiles anedeld'WP'€ ap . an
a result, each segment occurs for a shorter time-period.

expressions. We tested for the 10 AUs that occurred 5 or more

times. We trained on the sequences of 4 of the 10 subjects, o

that were annotated frame-by-frame for AUs, and tested en th2-4 Generalization Performance

data of the other 6 subjects, that were annotated per seguefo test the robustness and generalization ability of the pro
The dataset contains relatively large head motions apdsed FFD method, we performed a smaller test on the Cohn-

moderate out-of-plane rotations. We note that in the dedaskKanade (CK) dataset [15]. We only tested on those AUs for

used in this paper all facial fiducial points were visible kit awhich at least ten examples exist in the dataset (18 AUs in 143

times. If that is not the case, one could train a differentodet sequences). The 10-fold cross-validation results are stiow

classifiers for each facial viewpoint. Table 4. As a reference, thg -scores for the MMI dataset are
The results for the SAL dataset are given in Table 3. Thaso repeated. The results achieved for the CK dataset are on

obtained classification rate is 80.2%, which is lower tham ttaverage similar to those for the MMI dataset. AUs 2, 5, 12, 15,
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Fig. 16: Percentages of early/on time/late detection arsition and window size. Also shows average frame offset.

. . AU 6 [CR RC PR Fy FY MM

20, 24 and 25 perform much better in the CK dataset. Possible | ——— 5 — 55515589 [ s6.50  s680 | 876 | 7273

explanations for the inferior performance of AU 10, 11, 14 2 4 | 94.41 | 92.31 | 87.80 | 90.00 | 940 | 72.73

i : ; ; 4 | 20| 7483 | 8596 | 6364 | 73.13 | 874 | 69.33

and 45 lie in the d|fferences_ in ground truth labelling and th 5 |2 | 9231 | 7586 | sa62 | 8000 | 783 | asas

absence of offset segments in the CK dataset. The two daitaset | 6 16 | 94.41 | 84.21 | 76.19 | 80.00 | 880 | 73.68

: f s ; 7 16 | 71.33 | 72.00 | 34.62 | 46.75 | 76.9 36.36

were labelled in different ways. More specifically, in the CK | g | 5" | o301 | 8o.a7 | 68.00 | 7727 | 764 | 69.23

database, trace activations (FACS intensity A) were alsedp 10 | 16 | 89.51 | 46.67 | 50.00 | 48.28 | 500 | 75.86

- ; : 11 | 4 | 8881 | 50.00 | 37.50 | 4286 | — | 66.67

whereas in the MMI dataset only AUs of FACS intensity B | 15 | g | 9510 90.00 | 78.26 | 83.72 | 921 | 62.22

and higher were considered. Trace activations (espedially 14 | 8 | 93.01 | 33.33 | 42.86 | 3750 | — | 51.06

; : : 15 | 8 | 9231 | 6842 | 72.22 | 7027 | 30.0 | 56.25

AU_ 10, 11 and 14) involve very subtle changes in the facial | 17 | , | g392 | 7255 | 8043 | 7620 | — | 7650

skin appearance, that remain undetected by our method. 20 | 20 | 90.91 | 73.53 | 86.21 | 79.37 | 60.0 | 43.48

i i 24 4 90.21 | 70.59 | 57.14 | 63.16 14.3 44.00

Another difference between the results is that for the CK | 25 | 2 | 9510 | 92.68 | 98.70 | 9560 | 95.3 | 84.66

; ; 27 | 8 | 95.80 | 95.45 | 80.77 | 87.50 | 893 | 96.30

dataset, Io_wer window sizes are selected than for the MMI | 72 | 5 | 6231 | 8148 | 7857 | 8000 | — | 9209
dataset. Since each_sequ_ence in the CK dataset ends at th Aerages| CR T RC [ PR | &

apex of the expression with the offset segments cut off, no ﬁverage our metgog, ﬁ ﬁgs gg-;g ;ggg ;ggi ;é;g

GentleBoost classifiers could be trained for the detectibn o | “**% 20 Mene 200sT 903 | 733 | 105 | 12.63

offsets and the HMM classification relies solely on the onset AU =Action Unit, & = Window Size, CR = Classffication Rate

detections. Since the duration of onsets is generally short JRﬁ=:R;Cf/'glif;f;;a:tifr[ZZ']S?’)w'}??‘:}F Lmeasure OK dataset

than offsets, shorter window sizes tend to be selected. The ——— — :

absence of offset phases, especially for fast AUs like AU 49ap| E 4: Results for testing the system for 18 AUs on 143
in which onset phases can often not be captured in more thayyences of the CK dataset.

1-2 frames and the detection relies heavily on the detection

offset phases, explains the inferior performance for suds.A

A possible explanation for better performance for AU 2, 5, F::I;e S §2R52 55017 Zngs 55113

12 and 15 lies in the intensity of these expressions present | Trained on MMI. tested on MMI| 93.52 | 76.02 | 58.79 | 65.40

the CK dataset. More specifically, facial expression digpla | Trained on CK, tested on CK | 89.78 | 75.63 | 70.25 | 72.14
constituting the CK dataset are shorter and more exaggbratc CR=Classification Rate, RC=Recall Rate, PR=Precision,Hate F’; -measure
than it is the case with data from the MMI dataset. The better
performance for AUs 24 and 25 can be explained by the greater
number of examples present in the CK dataset.

We compare our results to those reported earlier by Valstar o )
& Pantic [34], the only other authors that addressed tfaethod of V_alstar & Pantic is unable to deal at all Wlth AUs
problem of AU temporal segments recognition. Valstar &1 (nasolabial furrow deepener), 14 (mouth corner dimpler)
Pantic use 153 sequences from the CK dataset, where & 17 (chin raiser), the activation of which is only apparen
use 143. Their geometric-feature-based approach gives fERM changes in skin texture and cannot be uniquely detected
average very similar results. Interestingly, on this detas from displacements of facial fiducial points only [26, 23].
the results of Valstar & Pantic are much better for AUs 4 A cross-database test was also performed with the MMI
and 7 (the related facial displays are characterized byelargnd CK dataset. Average results are shown in table 5. The
morphological changes which can easily be detected basests were run on those AUs available in both datasets using
on facial point displacements) and the results obtained hytemporal window size of 20 frames. The average result is
the FFD-based method are much better for AUs 15, 20 aslightly lower than the result for training and testing or th
24 (which activations involve distinct changes in skin tegt MMI dataset, but this is to be expected given the different
without large displacements of facial fiducial points).&lthe coding styles and other differences between the two dataset

TABLE 5: Results for cross database testing, 18 AUs.
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Authors T features classification | | bl h di h h K
Bartlett et al. 2005 [3] a,f | Gabor filters AdaBoost+SVM are largely comparabie to those reporte in the other works,
Bartlett et al. 2006 [4] af | Gabor filters AdaBoost+SVM 89.8% vs. 90.2%, 93.3%. For the MMI dataset, we outperform
Chang 2006 [5] a,f | manifold embed. Bayesian h h ks. Th . f h .
Whitehill & Omlin 2006[39] | a,f | Haar wavelets AdaBoost the other works. € main reasor! or the worse comparatlve
Littlewort et al. 2006 [18] | af | Gabor filters AdaBoost+SVM performance on the CK dataset is probably the absence of
Lucey et al. 2007 [20] af | AAM SVM ff I both the MMI d SAL d

Valstar & Pantic 2004 [36] at | MHIs kNN/rule-based 0 set-segments. n contrast, Ot. the an at_aset
Pantic & Patras 2005 [22] | g,t | tracked face points| temporal rule-base contain the offset segments, which can greaﬂy he|p vaidat
Valstar & Pantic 2006 [34] g,t | tracked face points| AdaBoost+SVM h f AUS i HMM cl ificati h

Valstar & Pantic 2007 [35] g,t | tracked face points| AdaBoost+SVM the occurrence o S In our Classitication scheme.
Tong et al. 2007 [33] a,t | Gabor filters AdaBoost+DBN

This work at | FFD GentleBoost+HMM

+: geometric/appearance-based(g/a), temporal-/frarseelftf)

5 CONCLUSION AND FUTURE WORK

In this work we have proposed a method based on non-rigid
registration using free form deformations to model dynamic
of facial texture in near-frontal-view face image sequearfoe

TABLE 6: Comparison of AU recognition methods.

Authors [AU NS [CR [ Fi [ FA [ Hit | FRR ) a

CK dataset, Image-based works the purposes of automatic frame-by-frame recognition o6 AU
Bartlett '05 [3] 17 313i 94.8 3.9 60.2 i i

Bartiott ‘08 [4] SO L i IR and _the|r temporal dynamics. To the best of our kr!owledge,
Chang '06 [5] 23 | 2581 | 89.4 = - this is the first appearance-based approach to facial expres

[uniefil 06 [[3198J] R : : sion recognition that can detect all AUs and their temporal
Lucey '07 [20] 15 | (i | 95.5 16.7 1.9 segments. We have compared this approach to an extended
CK datasef, Sequence-based works version of the previously proposed approach based on Motion

Valstar '04 [36] 10 | 344s [ 68 | - 320 .

Pantic '05 [22] 21 | 90s | 9331 - . History Images. The FFD-based approach was shown to be
Valstar '06 [34] 15 N@)s (1902 T72.9 s : far superior. On average, it achieved Aprscore of 65% on

Tong '07 [33] 14 | (?)s | 933 - 55 | 86.3| - . 2

This work 18 | 143s | 89.8| 721 | 64 | 756 | 201 | the MMI facial expression database, 72% on the Cohn-Kanade
This work, 15 best AUs| 15 | 143s | 925 | 725] 48 | 738 ] 26.1| (atabase and 76% on the SAL dataset (containing spontaneous
'\C"r:\g:]gd?ézsﬁv]'mage'bafegg""o"kz ——— expressions). For each correctly detected temporal sedgmen
MMT dataset, Sequence-based works ' transition, the mean of the offset between the actual and the
\P/a'stt?f,g;[gg] 32 2233 gé7 predicted time of its occurrence is 2.46 frames. We have
antic S . -

Valstar 07 [35] 23 | 196s | - 66.0 compared the proposed FFD-based method to that of Valstar
This work 27 | 264s | 94.3 | 65.1 & Pantic [34, 35], which is the only other existing approach t

AU = No. of AUs recognized, NS = number of sequences/framés sed
CR = Classification Ratef’; = F-measure, FA = False Alarm/Accept Rate
Hit = Hit Rate, FRR=False Rejection Rate

recognition of AUs and their temporal segments in frontalwi
face images (using a geometric-feature-based approduér rat
TABLE 7: Comparison of results on CK and MMI dataset.than an appearance-based approach). Comparable restéts ha
been achieved for the CK facial expression database. The two
approaches seem to complement each other, with some AUs
being better detected with one approach and some AUs being
better detected with the other approach. This is in accamlan
We compared our method to earlier works that reported iesulb the previously reported findings suggesting that connigini
on either the CK or the MMI dataset. Table 7 gives athe appearance- and geometric-feature-based approacizes t
overview of these works. It is interesting to note that mosial expression analysis will result in an increased penémice
works are image-based, which means they derive the cl§3i, 21]. Attempting to fuse the two approaches therefore
sification per frame independently and do not take temporems a natural extension of this work.
information into consideration. Additionally, it meansthhe
results reported for those Wo_rks are found u_sing manua_WEFERENCES
selected "peak” frames, that is, frames showing the AU
guestion at maximum intensity. In contrast, sequenceebaﬁe]
approaches take the whole sequence into account withaut p[p)
information as to the location of the peak intensity.

Table 6 shows results reported previously on the CK a
MMI datasets. While the classification rate (the percentsge
correctly classified frames/sequences) is the most commonl
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