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Abstract

The explosion of user-generated, untagged multimedia data in recent years, generates a strong need for efficient search
and retrieval of this data. The predominant method for content-based tagging is through slow, labour-intensive manual
annotation. Consequently, automatic tagging is currently a subject of intensive research. However, it is clear that the
process will not be fully automated in the foreseeable future. We propose to involve the user and investigate methods
for implicit tagging, wherein users’ responses to the interaction with the multimedia content are analysed in order to
generate descriptive tags.

Here, we present a multi-modal approach that analyses both facial expressions and Electroencephalography(EEG)
signals for the generation of affective tags. We perform classification and regression in the valence-arousal space and
present results for both feature-level and decision-level fusion. We demonstrate improvement in the results when using
both modalities, suggesting the modalities contain complementary information.

Keywords: Emotion classification, EEG, Facial expressions, Signal processing, Pattern classification, Affective
computing.

1. Introduction

In this paper, we utilize methods for facial expression
and EEG signal analysis (introduced in Section 2.2) to
investigate the possibilities for multi-modal fusion in affect
recognition and implicit tagging. We use a dataset with
recordings of participants watching video clips designed to
elicit emotional responses. These responses, in the form of
detected facial expressions and EEG signals, are classified
into arousal, valence, and control classes. Both feature-
level fusion and decision-level fusion methods are explored
and shown to improve upon the single modality results.
In addition, we show how this method can be effectively
used for the implicit tagging of videos by aggregating affect
estimates from multiple participants. The main novelty in
this work is the combination of the facial expression and
EEG modalities for affect recognition and implicit tagging
of videos. To the best of our knowledge, this is the first
work to attempt this.

The remainder of this paper is organized as follows: We
first give an overview of related works in Section 2. The
used dataset is described in Section 3. Next, we detail the
methodology used for feature extraction in each modality
and the methods used for fusion in Section 4. We present
the obtained classification results from single modalities
and from both feature-level and decision-level fusion, as
well as the results for implicit affective video tagging in
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Section 5. Results for regression of the single modalities
and fusion are given in Section 6. Section 7 concludes the
paper.

2. Related work

2.1. Implicit tagging

Implicit tagging concerns the automated annotation of
multimedia data by analysis of users’ behaviour. The ad-
vantage over explicit tagging is that it is done passively and
requires little or no active or conscious involvement from
users (other than their usual interaction with the multime-
dia data). For example, a video could be implicitly tagged
as humorous if a user is filmed smiling or laughing in re-
sponse to it. Then, other users searching for humourous
videos can benefit from these tags. Where explicit tag-
ging can be a slow and labour-intensive process, implicit
tagging is done in the background, can be performed each
time a multimedia item is viewed and can deliver a wealth
of annotation that can be used in search and indexing of
multimedia data and can be combined with any tags de-
rived explicitly (e.g. through crowd-sourcing of tags). In
addition, implicit tagging can be used to assess the valid-
ity of existing tags, as well as for user profiling (storing
particular preferences of a user based on his reactions to
content)[1].

So far, tagging is mostly done explicitly and manually
by humans, or automatically using computer vision algo-
rithms. Both types of existing tags suffer from various
drawbacks. Manual tagging is greatly increasing with the
rise of social media websites, allowing users to attach tags
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to uploaded multimedia items. However, as mentioned in
[1], users do not typically tag with the intent of enriching
the data for automated search and indexing. Instead users
tag based on their own personal and social needs, bring-
ing the value of these tags into question. Machine-based
tagging suffers from the issue of the semantic gap, where
tags may include recognized objects/locations/faces, the
detected amount of motion, shot transition speed, etc. but
tagging algorithms still have great difficulty assigning se-
mantic meaning to multimedia items, such as detecting
plot keywords or affective content. Implicit tagging may
be able to alleviate some of these shortcomings.

Broadly speaking, there exist two approaches to the
problem of implicit tagging: game-based tagging and ob-
servation-based tagging. In the former, the tagging of the
data is a by-product of playing a game. In game-based
tagging, users do actively participate and contribute tags,
but are not necessarily consciously aware of it. The tagging
itself is not the user’s goal or intention; they are merely
playing a game. In this sense, game-based tagging can be
viewed as a form of implicit tagging, but rather than de-
riving tags from observation of the user, users are ’tricked’
into producing the tags themselves. The most well-known
of these approaches is probably the ESP game[2]. In the
game, two users are paired and are given the task of as-
signing tags to an image. Points are awarded when the
same tag is given by both users. The users do not know
each other and can not communicate, so their only way to
score points is to assign straightforward tags to the image
in the hope that their counterparts will assign the same
ones. Since the publication of this work, several authors
have expanded and refined this concept for a diverse set of
tag types such as object localization[3], music metadata[4]
and moods[5].

In observation-based tagging, users’ responses as they
view the media are recorded and analysed in order to ex-
tract tags describing the media. User responses can be
recorded from a variety of modalities. In this work, we
focus on the modalities of facial expressions and EEG sig-
nals. Of the possible passive observation modalities, facial
expressions probably are the most informative, while EEG
signals may reveal some otherwise unobservable affective
states and may well complement the former modality.

2.2. EEG signal analysis for tagging

Electroencephalography (EEG) is a non-invasive tech-
nique for measuring a participant’s brainwave patterns, by
recording electrical activity via electrodes placed on the
scalp. A cap is placed on the participant’s head, electrode
gel is applied to ensure good conductivity and then elec-
trodes are attached to the cap. An international standard
known as the 10-20 system determines the location of the
electrodes on the scalp (see Fig. 1).

The use of EEG in annotating multimedia data is a
very new research direction and so far only a few works
have investigated this area.
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Figure 1: Electrode placement in the 10-20 system.

In [6], an oddball paradigm is used in which images of a
forest environment were shown to participants for 100 ms
each. The goal was to detect a small subset of target im-
ages that contained pedestrians. The target images elicit a
P300 event-related potential(ERP) which is then classified
using Fisher linear discriminant analysis. Another test is
run without the EEG modality, where participants press
a button upon seeing the target images. The results show
no significant differences in target image detection accu-
racy between the use of the EEG modality and the use of
buttons.

In [7, 8], categories of images are classified based on
EEG measurements recorded as the images were presented.
The used categories are faces, animals and inanimate ob-
jects. This is based on the notion that the human visual
system responds very differently to these categories of im-
ages. The authors propose a vision-based algorithm that
uses pyramid match kernels to initially classify the images.
The EEG data is then combined with the vision-based fea-
tures using a kernel-alignment method. The combination
of the two modalities outperforms the individual methods.

In [9], the RAPID system is proposed. The authors use
ERP analysis in combination with eye tracking to assist
intelligence analysts in rapidly reviewing and categorizing
satellite imagery. The analyst is assigned a target category
to look for in the images. When participants see an image
in the target category, an ERP occurs in the EEG data
which is then classified. Eye tracking is used to determine
points of interest within the images.

In [10], a method is proposed for validation of tags dis-
played in conjunction with videos using EEG signals. Vid-
eos are displayed with either valid or invalid tags. It has
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been shown that in cases of two semantically mismatching
categories an N400 ERP occurs at around 400 ms after the
second stimulus is presented. The authors demonstrate
significant differences in the EEG signals recorded during
the display of valid versus invalid tags.

Several works have attempted recognition of emotions
from EEG signals. In [11], participants are asked to re-
member an episode in their life that corresponds to posi-
tive/excited and one that corresponds to negative/excited
emotions. A third emotional state called calm/neutral is
elicited by asking the participants to stay calm and relax.
For these three classes, a classification accuracy of 63% is
reported using the short-time Fourier transform for feature
extraction and a linear SVM for classification.

In [12], participants watch a series of music videos se-
lected to elicit emotions. The participants then rate the
felt emotions in terms of valence, arousal and like/dislike.
In performing a binary classification, accuracies of up to
62% are attained based on EEG bandpower features and
a Gaussian Näıve Bayes classifier. Regression results for
the same experiment are reported in [13].

In [14], 5 different emotions (joy, anger, sadness, fear,
relaxation) are elicited by using video stimuli in 12 partic-
ipants. Using a one-vs-all SVM classifier, a classification
rate of 41.7% is reported.

Besides these works, much research has been done in
psychology into ERP analysis and correlations with emo-
tion (e.g. [15, 16, 17]). These works show clear associations
between ERP activity and valence/arousal. However, they
mostly have in common that they work with time-locked
stimuli (such as pictures), and average the ERP signal over
several trials to increase the signal-to-noise ratio. In the
implicit tagging paradigm, the focus is mainly on mak-
ing judgments on single trials, since the main goal is to
derive tags without active participation from users, ren-
dering it nearly impossible to obtain multiple recordings
of responses to the same stimulus. In addition, we can
not rely on time-locked stimuli, as in this paradigm it is
generally not known in advance what the stimulus will be
(the user should be able to watch anything he/she likes).
Without time-locked stimuli and using only single trials,
performing a proper ERP analysis as in these works is vir-
tually impossible.

2.3. Facial expression analysis for tagging

Two main streams in the current research on auto-
matic analysis of facial expressions consider facial affect
(emotion) detection and facial muscle action (action unit)
detection[18, 19, 20]. The most commonly used facial ex-
pression descriptors in facial affect detection approaches
are the six basic emotions (fear, sadness, happiness, anger,
disgust, surprise), proposed by Ekman and discrete emo-
tion theorists, who suggest that these emotions are uni-
versally displayed and recognized from facial expressions.
The most commonly used facial muscle action descriptors
are the Action Units (AUs) defined in the Facial Action

Figure 2: Apex phases of 8 AUs of the FACS system.

Coding System (FACS; [21]). The basic emotion categor-
ies form only a subset of the total range of possible facial
displays and categorization of facial expressions can there-
fore be forced and unnatural. Boredom and interest, for
instance, do not seem to fit well in any of the basic emo-
tion categories. Moreover, in everyday life, these proto-
typic expressions occur relatively rarely; usually, emotions
are displayed more subtly. To detect such subtle expres-
sion a model of atomic facial signals, such as FACS, is
needed. FACS classifies atomic facial signals into Action
Units, considered to be the smallest visually discernible fa-
cial movements, according to the facial muscles that cause
them. It defines 9 upper face AUs and 18 lower face AUs.

However, Action Units do not encode the semantic or
affective meaning of the expression, which, for many ap-
plications, is the main focus. Thus, methods are needed to
map the occurrence of AUs to the presence of higher-level
affective states. For discrete emotions, the EMFACS [21]
method (for basic emotions) and the FACSAID1 (for vari-
ous affective states) methods provide rules to map AU (co-
)occurrences to discrete emotions. FACS is also used for
determination of other complex psychological states such
as depression[22] or pain[23], or other higher-level states
[24].

When it comes to associations between AUs and di-
mensional models of emotion, such as the valence-arousal
model, little research is available[25]. Russell’s valence-
arousal scale, widely used in research on affect, is used
to quantitatively describe emotions. In this scale, each
emotional state can be placed on a two-dimensional plane
with arousal and valence as the horizontal and vertical
axes. While arousal and valence explain most of the vari-
ation in emotional states, a third dimension of control is
often included in the model [26]. Arousal can range from
inactive (e.g. uninterested, bored) to active (e.g. alert, ex-
cited), whereas valence ranges from unpleasant (e.g. sad,
stressed) to pleasant (e.g. happy, elated). Control ranges
from a helpless and weak feeling (without control) to an
empowered feeling (in control of everything). To the best
of our knowledge, only one work tries to estimate emotions
in a dimensional model by first detecting AUs[27]. They
first detect the AUs present in the video and subsequently
classify the valence value, but do not list associations found
of particular AUs with valence. The original work propos-

1http://www.face-and-emotion.com/dataface/facsaid/description.jsp
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ing the valence-arousal model[26] does however give infor-
mation on the relation of valence and arousal to discrete
emotions. Thus, one could map the AUs to a discrete
emotion using for instance FACSAID, and then find the
approximate location in valence-arousal space from [26].

The use of facial expressions for multimedia tagging is
also a new concept and consequently only few works are
available. In [28], facial expressions are utilised for implicit
feedback to determine the relevance of search results. An
excerpt of the result document is shown to the user and
the result is then classified as relevant or irrelevant for the
query based on the user’s facial expressions. A similar
methodology is applied in [29].

Jiao and Pantic[30] performed an experiment on im-
plicit tag validation using facial expressions. They use
geometric features obtained from a particle filter tracker
with a Hidden Markov Model to assess the correctness of
tags displayed alongside images from the participants’ fa-
cial expressions. On average, 54% of the trials are correctly
classified.

2.4. Multi-modal approaches

In general, approaches for modality fusion can be clas-
sified into two broad categories, namely, feature fusion (or
early integration) and decision fusion (or late integration)
[31].Some works have also attempted a combination of
both methods in hybrid fusion[32]. In feature-level fusion,
the features extracted from signals of different modalities
are concatenated to form a composite feature vector and
then inputted to a recognizer. In decision fusion, on the
other hand, each modality is processed independently by
the corresponding classifier and the outputs of the classi-
fiers are combined to yield the final result. Various meth-
ods can be used for decision-level fusion, such as simple
rule-based methods (for instance taking the sum or prod-
uct of class probabilities) to classifier-based approaches,
where a meta-classifier is trained taking the decisions from
individual classifiers as its features.

Each approach has its own advantages. For example,
implementing a feature fusion-based system is straightfor-
ward, while a decision fusion-based system can be con-
structed by using existing unimodal classification systems.
Moreover, feature fusion can consider synchronous char-
acteristics of the involved modalities, whereas decision fu-
sion allows us to model asynchronous characteristics of
the modalities flexibly. In addition, in feature-level fusion,
correlations between feature sets can be exploited by the
classifier, while these are lost in decision-level fusion.

The most common modalities to be merged are combi-
nations of audio, video and text modalities[32]. In facial
expression analysis, the main modalities to be used are
aural and visual features[20]. The EEG modality is most
often fused with fMRI , EMG, MEG or PET in clinical set-
tings. For multimedia applications, EEG has been fused
with peripheral physiological signals and gaze information
in [33], with peripheral physiological signals and audio-
visual features in [13, 12] and with audio-visual features in

[7, 8]. To the best of our knowledge, the combination of
EEG and facial expressions has not been attempted pre-
viously. For a more thorough review of previous methods
for multi-modal fusion, the reader is referred to the recent
surveys by Sebe et al.[34], Zeng et al.[20] and Atrey et
al.[32].

3. Dataset

Figure 3: A participant in the MAHNOB HCI experiment.

We use the MAHNOB HCI[33] dataset in this experi-
ment, which contains EEG, video, audio, gaze and periph-
eral physiological recordings of 30 participants. Each par-
ticipant watched 20 clips extracted from hollywood movies
and video websites such as YouTube.com and blip.tv. The
stimuli were selected in order to elicit 5 emotions (dis-
gust, amusement, joy, fear and sadness). In addition,
various weather reports were included as neutral stimuli.
The stimuli videos range in duration from 35 to 117 sec-
onds. After watching each stimulus, the participants used
Self-Assessment Manikins (SAM)[35, 36] to rate their felt
arousal, valence and control on a discrete scale of 1 to 9.

Facial video was recorded by 6 cameras at 60 frames
per second from different angles. Only the frontal camera
is used in this study. 32 channel EEG, placed according
to the 10-20 system (see Figure 1) was recorded at 256Hz
using a BioSemi ActiveTwo system. Figure 3 shows a par-
ticipant during the experiment.

For 6 of the 30 participants, various problems such as
technical failures occurred during the experiment. Here,
only the 24 participants for which all data is available were
used.

4. Affect recognition using EEG and Facial expres-
sions

4.1. EEG features

The EEG signal is down-sampled to 128Hz and a 4-
45Hz bandpass filter is used to reduce artefacts. As EOG
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Preselected electrodes[12]
Arousal Valence

CP6*, Cz*, FC2* Oz**, CP1**, T7**, C4**, FC6**, PO4**,
Cz*, CP6*, CP2*, T8*, F8*

Table 1: Preselected features based on earlier work[12] (*=p < .01,
**=p < .001).

was not recorded, eye movement artefacts are not sup-
pressed. The average of the 15-second baseline signal be-
fore each trial is subtracted from the trial data and it is
referenced to the common average (CAR).

Power spectral density (PSD) in the Theta (4 - 8Hz),
slow alpha (8 - 10Hz), alpha (8 - 12Hz), beta (12 - 30Hz)
and gamma (30 - 45Hz) bands is computed, as well as the
lateralization for 14 left-right pairs. This gives a total of
(5 bands × (32 channels + 14 asymmetry pairs)) = 230
features.

PSD features have been previously used for EEG sig-
nal analysis, for example in [12]. In that work, significant
correlations with arousal and valence are found for a sub-
set of the 32 electrodes. Table 1 gives an overview of these
electrodes. For the control dimension, we have not found
a list of important electrodes in literature. However, the
results presented here with the reduced electrode set, im-
prove upon results for the full set for all three dimensions.

We also include electrodes Fp1 and Fp2 as they of-
ten respond to eyebrow motion and/or forehead wrinkling.
While this is usually considered noise in the EEG litera-
ture as it is not caused by neurophysiological activity, we
consider this a valid feature as eyebrow action may wel
correlate with our affective targets. In this work, we limit
the EEG feature vector to contain these 14 electrodes (and
their 9 associated left-right pairs), giving a final 115 fea-
tures.

4.2. Facial expression features

The method for facial expression analysis used here is
based on the work on facial Action Unit (AU) detection
described in [37], which performs frame-by-frame recogni-
tion of the activation of Action Units. Fig. 4 gives an
overview of this system. In the preprocessing phase, the
face is located in the first frame of an input video and
head motion is suppressed by an affine rigid face registra-
tion. Next, non-rigid motion is estimated between con-
secutive frames by the use of Non-rigid Registration using
Free-form Deformations (FFDs). For each AU, a quadtree
decomposition is defined to identify face regions related to
that AU. In these regions, orientation histogram feature
descriptors are extracted. Two GentleBoost classifiers are
trained per AU, one to detect onset segments and one to
detect offset segments. Finally, a Hidden Markov Model
(HMM) is used to classify the input video in terms of AUs
and their temporal segments, based on the output of the

GentleBoost classifiers. For more details on this method,
the reader is referred to [37].

In this work, the final classification target is not the
AUs themselves, but rather the arousal, valence and con-
trol ratings. Here, we use a two-step approach to accom-
plish this. First, we use the system proposed in [37] to
detect frame-by-frame AU activations. Second, a set of
meta-features is extracted from the output of this system,
which are subsequently used for classification and regres-
sion in terms of arousal, valence and control.

We note that no AU ground truth annotation is avail-
able for the MAHNOB HCI dataset. Manually annotating
the dataset of in total 480 videos in terms of AUs was not
considered feasible. Therefore, we can not train the AU
detection system on this dataset. Instead, we use the sys-
tem as trained on the (posed) MMI dataset, which showed
success in classifying AUs in the posed Cohn-Kanade (CK)
and the spontaneous SAL datasets [37]. The same 18 AUs
are detected as in the CK dataset in [37] (AUs 1, 2, 4, 5,
6, 7, 9, 10, 11, 12, 14, 15, 17, 20, 24, 25, 27 and 45).

Unfortunately, little work is available on the associa-
tions between AUs and dimensional models of emotion.
For discrete emotions there is however some earlier work
available. EMFACS[21] is an addition to FACS, that al-
lows annotators to only annotate those AUs and AU com-
binations associated with the 6 basic emotions. Table2
lists these AUs. As these basic emotions can be mapped
with some accuracy in dimensional models[26, 38], we can
hypothesize that these AUs may also correlate with arousal,
valence, control, etc.

Therefore we limit the AUs used in our system to the
intersection of Table2 and those AUs we can detect. For
each AU (combination), we extract three features: the
number of onset detections in the video, the number of
offset detections in the video, and the difference in mean
output of onset- and offset-classifiers (a possible indication
of the strength of the AU activation). This gives a total
of 28 × 3 = 84 features.

Figure 5 shows several screenshots of face videos in
the MAHNOB HCI dataset. This dataset is quite chal-
lenging for facial expression analysis, partly due to the
spontaneous nature of the expressions. In addition, unlike
in some other datasets such as SAL, there is no (virtual)
conversation partner or in fact anyone else in the room.
This means the number of expressions is quite sparse and
expressions that are shown are generally quite subtle.

4.3. Classification

We perform binary classification on the arousal, va-
lence and control ratings, which are thresholded into high
(rating 6-9) and low (rating 1-5) classes. Those videos that
are rated 5 (in the middle of the 9-point scale) are grouped
with the low class, since this gives the most balanced class
distribution.

We use recursive feature elimination (RFE) to select
features for classification. This is done by iteratively cal-
culating the feature weights for a linear SVM classifier and
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Figure 4: Outline of the proposed method.

Happiness Fear Sadness Surprise Anger Disgust

12 1+2+4 1+4 1+2+5+26|27 4+5+7+10+22+23+25|26 9|10+17
6+12 1+2+4+5 1+4+11|15 1+2+5 4+5+7+10+23+25|26 9|10+16+25|26

1+2+4+5+20+25|26|27 1+4+15+17 1+2+26|27 4+5+7+17+23|24 9
1+2+4+5+25|26|27 6+15 5+26|27 4+5+7+23|24 10
1+2+5+25|26|27 11+17 4+5|7
5+20+25|26|27 1 17+24
5+20
20

Table 2: AU’s and AU combinations associated with the 6 basic emotions, according to EMFACS. ”|” indicates OR. AUs in boldface are not
detected by our system.

then removing the 10% of features with lowest weights.
This continues until the target number of features remains.
The number of selected features is optimized by a 10-fold
inner cross-validation on the training set.

We compare the performance of RFE to feature re-
duction through Independent component analysis (ICA).
Independent component Analysis [39] is an extension of
principal component analysis (PCA) and a form of blind
source separation (BSS). In principal component analy-
sis, the objective is to separate the signal into orthogonal
components of decreasing variance. In independent com-
ponent analysis however, we try to find statistically inde-
pendent components which may not be orthogonal. ICA
decomposes the source signal into a linear combination
of maximally independent components. The assumption
is that measured electrical activity is a linear mixture of
underlying sources in the brain. Here, we use an imple-
mentation of the FastICA algorithm, originally developed
by Hyvärinen and Oja[40]. The number of components to
use is again determined by 10-fold inner cross-validation
on the training set.

For classification we use a Gaussian Näıve Bayes (GNB)
classifier as implemented in the scikits-learn toolkit2. The
näıve Bayes classifier G assumes independence of the fea-
tures and is given by:

G(f1, .., fn) = argmax
c

p(C = c)

n∏
i=1

p(Fi = fi|C = c) (1)

where F is the set of features and C the classes. p(Fi =
fi|C = c) is estimated by assuming Gaussian distributions
of the features and modelling these from the training set.

2http://scikit-learn.sourceforge.net/

This is a simple and generalizable classifier which is
able to deal with unbalanced classes in small training sets
and has the added advantage of providing probabilistic
outputs, which can be used for decision-level fusion.

We perform two types of cross-validation. First, we
perform 10-fold cross-validation on the entire set of 480
trials. Second, we perform a per-subject leave-one-trial-
out cross-validation, where the classifier is trained on 19
trials from the same subject and tested on the 20th.

4.4. Regression

For regression, we first scale the arousal, valence and
control ratings to the [0, 1] range for convenience. We use
again RFE and ICA for feature selection, but in this case
we use the cross-correlation between the features/components
and ratings as the feature/component weights. The model
we use for regression is Bayesian Ridge Regression as im-
plemented in the scikits-learn toolkit2. This model is sim-
ilar to ordinary least squares regression, but attempts to
avoid overfitting by penalizing large values of its coeffi-
cients (see [41] for more information).

The same cross-validation approach is taken as in clas-
sification.

4.5. Classification Fusion

We investigate both feature-level and decision-level fu-
sion in this work. In feature-level fusion, the feature vec-
tors from both modalities are stacked together and the
total number of features becomes 199. Next, classification
proceeds the same as for the single modalities.

In decision-level classification fusion, we first classify
the modalities individually as described above and then
combine the classifier outputs in a linear fashion. Figure
6 depicts the two different approaches graphically. We

6



Figure 5: Example screenshots of face video in the MAHNOB HCI dataset.
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Figure 6: Fusion approaches depicted graphically. Top: feature-level
fusion, bottom: decision-level fusion.

distinguish two different types of approaches to decision-
level fusion.

First, we present methods for estimating a per-sample
weighting α for the different modalities where the final
decision is a weighted sum of the outputs from classifica-
tion of the individual modalities. For each trial, let pxe ,
pxf and pxo ∈ [0, 1] denote the classifier probability for class
x ∈ {1, 2} for EEG, facial expressions and fusion respec-
tively. Then the output class probabilities are given by

pxo = αpxe + (1− α)pxf . (2)

Besides the probability p of each class as given by the
GNB classifier, we additionally take into account the clas-
sifier’s training set F1-score for each trial. The training
set performance is determined by a 10-fold inner cross-
validation on the training set. Let Fe, Ff ∈ [0, 1] denote
the training set F1-score for EEG and facial expression
classification respectively. We first normalize these scores
to ensure the fusion probabilities for all classes sum up to
1. The normalized training set performance te and tf are
given by

te =
Fe

αFe + (1− α)Ff
, tf =

Ff

αFe + (1− α)Ff
. (3)

Then, the output class probabilities are given by

pxo = α(pxe te) + (1− α)(pxf tf ). (4)

It can then be shown that

p1o + p2o = αte + (1− α)tf =
αFe + (1− α)Ff

αFe + (1− α)Ff
= 1. (5)

Second, we also present a meta-classification fusion
method, where a meta-classifier is trained on the outputs

from classification of the individual modalities. The dif-
ferent methods investigated for decision-level classification
fusion are each briefly explained below.

Equal weights fusion(W-EQ and W-EQT )

W-EQ is the most straightforward method, where the
output probabilities for each class are an equal weighting of
the class probabilities from each single modality (α = 0.5).
That is,

pxo = 0.5pxe + 0.5pxf . (6)

For W-EQT , the training performance (te and tf ) is also
considered. That is,

pxo = 0.5(pxe te) + 0.5(pxf tf ). (7)

Estimated weights fusion(W-EST and W-ESTT )

For a given sample, we numerically approximate the
optimal decision weight α for the set of training samples.
This is done by varying α between 0 and 1 in steps of 0.01
and choosing the value which gives the highest F1-score on
the training samples. The estimated weight is then applied
to the current sample as in Equation 2. For W-ESTT , the
training performance is also used as in Equation 4.

Regression-estimated weights fusion(W-REG and W-REGT )

Here we first train a linear support vector regressor
(SVR) on the training samples with the class probabilities
from the individual modalities as features and the optimal
weight, determined as above, as the target. The SVR is
then used to predict the optimal weight for the current
sample and fusion class probabilities are computed as in
Equation 2. In W-REGT , the training set performance
Fe and Ff are also included as features and fusion class
probabilities are computed as in Equation 4.

Meta-classification of class label(M-CLASS and M-CLASST )

Here we train a linear SVM classifier on the probabilis-
tic outputs in order to directly predict the class of the cur-
rent sample. In M-CLASST , the training set F1-scores
Fe and Ff are included in the set of features.
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4.6. Regression Fusion

For regression feature-level fusion, the same combined
199-feature vector is used as for classification. For decision-
level fusion, we proceed in a similar fashion as for classifi-
cation. Instead of class probabilities, here we use the rat-
ings predicted by the single modality regressors directly
in Equation 4. In addition, for the training set perfor-
mance we replace Fe, Ff (F1-scores) by the reciprocal of
the mean squared error (MSE) to indicate the quality of
regression on the training set. This is then normalized
as in Equation 3. W-EQ, W-EQT , W-EST, W-ESTT ,
W-REG and W-REGT can then be used for fusion of
the output of the single modality regressors. Rather than
using meta-classification as in M-CLASS, here we use
meta-regression (M-REG). In M-REG, the aforemen-
tioned Bayesian Ridge Regression model is used with the
predicted values by the single modality regressors as fea-
tures (and the training set performance in the case of M-
REGT ).

5. Classification Results

5.1. Single modalities and feature fusion

Arousal Valence Control

Modality CR F1 CR F1 CR F1

IC
A

EEG 66.0 64.7 71.5 70.9 67.5 67.4
Face 65.0 63.8 64.5 62.8 64.5 64.3

Fusion 68.0 66.2 72.5 71.3 67.5 67.4

R
F
E

EEG 67.5 66.1 70.0 69.3 63.5 63.5
Face 67.5 66.3 64.0 63.3 62.0 62.0

Fusion 68.5 67.1 73.0 71.5 68.5 68.4†

Random 50.0 48.1 50.0 48.7 50.0 48.2
Majority 62.0 37.6 62.6 38.3 65.6 39.4
Class ratio 56.7 50.0 54.6 50.0 56.7 50.0

Table 3: Average classification rates (CR) and F1-scores (average of
F1-score for each class) for the single modalities and feature fusion
for the two different feature sets. †indicates that the fusion F1-
score distribution is significantly higher than the score distribution
of the best performing single modality according to a related two-
sided t-test (p < .05). As a baseline, expected results are given
for classification based on random voting, voting according to the
majority class and voting with the ratio of the classes. The highest
score per feature set and target is shown in bold.

Table 3 gives the classification results for each single
modality and rating target. As a baseline, we also give
the expected values (analytically determined) of classify-
ing randomly, classifying according to the majority class in
the training data, and classifying by choosing a class with
the probability of its occurrence in the training data. For
determining the expected values of majority voting and
class ratio classification, we used the class ratio of each par-
ticipant’s ratings during the experiment. All classification

F1-scores are significantly better than class ratio voting
according to an independent one-sample t-test (p < .01).

The result for feature-level fusion for both ICA and
RFE features is also given here. In all cases, fusion equals
or slightly outperforms the single modalities. However,
the difference is only statistically significant for the control
target with RFE features.

Figure 7 further investigates the balance between num-
ber of components or features, and performance for EEG
features, face features and feature-level fusion. The top
plot depicts the relationship between number of RFE-selected
features and F1-score. In most cases, the performance
tapers off as the number of features increases. For face
features, the performance peaks early, and adding more
features degrades performance. Possibly the number of
meaningful face features is limited, an additional features
just add noise and complexity. For EEG and feature-level
fusion, the result is more constant. While peak perfor-
mance of feature-level fusion is highest in most of the plot,
there are also areas where feature-level fusion performs
worse than the single modalities. Also shown is the actual
number of selected features by the inner cross-validation
loop mentioned earlier. We can see the estimate is quite
effective, although in some cases a more optimal number
of features exists (e.g. for EEG in valence and control).

The second plot shows the number of ICA components
versus F1-score, while the third plot shows the percentage
of variance explained by the ICA components. Again we
see the face features as performing least and showing the
largest drop in performance as the number of components
increases. We can also see that the explained variance
increases fastest for face features, which may again indicate
less information existing in these features. The inner cross-
validation selects the optimal number of components for
all cases except for feature-level fusion/control.

Feature-level fusion does not consistently improve the
results, especially when the disparity in performance be-
tween EEG and face features is large.

All results are significantly above the class ratio base-
line level. The RFE feature selection method slightly out-
performs ICA feature reduction, although the difference is
not significant.

In general, EEG seems to outperform the facial expres-
sion analysis. It may be possible to improve facial expres-
sion analysis results by training the AU detector on the
MAHNOB HCI dataset, rather than the currently used
MMI dataset. However, this would require the manual
annotation of the entire set for AUs. Another possible im-
provement may be possible by directly classifying arousal
and valence, rather than first classifying the AUs as an
intermediary step. We leave these improvements as future
work.

Table 4 lists the 10 most selected feature categories
in Recursive feature elimination. Somewhat surprisingly,
valence turns out to be the hardest target to classify in the
case of facial expressions. One might expect AU 12 (smile)
to be a clear indicator of valence, but it is rarely even
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Figure 7: The relationship between number of components/features and performance (averaged over participants). a) Number of RFE-selected
features plotted against F1-scores. b) Number of ICA components plotted against F1-scores. c) Number of ICA components plotted against
explained variance. In each plot, the circle denotes the number of actual selected features/components in the paper (selected by an inner
cross-validation loop).

Top 10 RFE selected AUs Top 10 RFE selected electrodes Top selected frequency bands
Arousal Valence Control Arousal Valence Control Arousal Valence Control

20 4+7 9 FC5 - FC6 FC5/FC6 FC5/FC6 4-8Hz 30-45Hz 4-8Hz
1+4 1 20 F7 - F8 Fp1/Fp2 F7/F8 8-10Hz 4-8Hz 12-30Hz
9 5+20+25 9+17 PO3 - PO4 PO3/PO4 CP5/CP6 12-30Hz 8-10Hz 8-10Hz
17+24 9+17 4+7 Cz CP1/CP2 Fp1/Fp2 8-12Hz 12-30Hz 8-12Hz
10+17 9+25 17+24 CP5 - CP6 FC1/FC2 FC1/FC2 30-45Hz 8-12Hz 30-45Hz
4+5 20 5+20+25 T7 - T8 CP5/CP6 CP1/CP2
9+17 17+24 1+2+4+5+25 FC2 F7/F8 T7/T8
1+2+4+5 10+17 1+2+5 T7 Fp2 PO3 - PO4
1+2+4+5+25 1+2+4 1 C3 - C4 PO4 Oz
1 1+2+4+5 10+25 CP1 - CP2 FC2 FC2

Table 4: AU combinations, electrode channels and frequence bands most often selected by Recursive feature elimination (listed in decreasing
order). Note that items with a / denote a lateralization pair.

selected by RFE. Upon visual inspection of the data, it was
found that the displayed smiles are firstly very subtle (and
thus hard to detect), and do not only occur in high valence
cases (e.g. awkward smiles can occur during disgusting
videos). The same in general holds for all archetypical
universal emotions, which rarely occur clearly throughout
the dataset.

Table 4 also shows the EEG electrodes most often se-
lected by RFE. The selected electrodes for valence and
arousal align reasonably well with those shown in Table
1, which were shown to correlate with these dimensions in
[12]. The two most often selected features for each tar-

get are frontal electrodes, indicating a likely effect due to
muscle activations, rather than neural activity.

The table also shows the most selected frequency bands.
For arousal, the most selected bands are theta and alpha,
which matches our earlier work [12, 42], and a relationship
between alpha power and arousal has been reported else-
where too [43]. For valence, the most selected band is the
gamma band, which also showed the strongest correlation
in [12]. Earlier work has also shown such correlations [44].
For control, the most features were selected from the theta
and beta bands.
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5.2. Decision-level fusion

Arousal Valence Control

Modality CR F1 CR F1 CR F1

IC
A

EEG 66.0 64.7 71.5 70.9 67.5 67.4
Face 65.0 63.8 64.5 62.8 64.5 64.3

W-EQ 67.0 65.5 72.5 71.0 71.5 71.5
W-EQT 66.5 65.0 72.5 71.0 71.0 70.9
W-EST 68.0 66.7 72.5 71.6 70.0 70.0
W-ESTT 69.5 68.3 71.5 70.2 72.5 72.4†

W-REG 69.0 67.7 73.0 72.2 71.0 71.0
W-REGT 70.0 68.8† 74.0 73.0 73.0 73.0†

M-CLASS 63.5 63.2 71.5 70.7 69.0 69.0
M-CLASST 66.5 65.8 71.5 70.7 67.5 67.4

R
F
E

EEG 67.5 66.1 70.0 69.3 63.5 63.5
Face 67.5 66.3 64.0 63.3 62.0 62.0

W-EQ 71.0 69.7 71.0 70.3 67.5 67.4
W-EQT 71.5 70.0 71.5 70.7 65.5 65.4
W-EST 72.0 70.4† 72.5 71.3 60.0 59.9
W-ESTT 71.0 69.4 67.5 66.2 64.0 63.9
W-REG 72.5 70.9† 73.0 71.8 67.0 67.0
W-REGT 71.5 70.0 71.5 70.4 67.0 66.9
M-CLASS 69.0 68.4 71.5 70.5 67.0 66.7
M-CLASST 70.5 70.0 70.5 69.7 66.5 66.4

Table 5: Average classification rates (CR) and F1-scores (average of
F1-score for each class) for decision-level fusion. For comparison the
results of single modalities are also shown. F1-scores higher than the
best single-modality result are bold. †indicates that the fusion F1-
score distribution is significantly higher than the score distribution
of the best performing single modality according to an independent
two-sample t-test (p < .05).

For decision-level fusion, we investigated the use of sev-
eral different methods as described in Section 4.5. Results
are shown in Table 5. While in most of the performed tests
the fusion does outperform the single modalities, in only
five cases the difference is statistically significant.

Significant results were attained only for the W-REG
and W-EST methods (and their counterparts with train-
ing set performance included). This suggests that trying
to predict or approximate a weighting between the modal-
ities generally works better than trying to directly classify
the samples using the individual modalities outputs as fea-
tures. In addition, using the training set performance does
not seem to lead to consistent improvements.

Figure 8 gives a graphical overview of the results for
single modalities, feature fusion, and decision level fusion.

5.3. Implicit Video tagging

Table 6 shows the results for implicit tagging of the
videos based on the classifier outputs of all participants.
This is challenging since the classes here are not objectively
defined. Arousal, valence, and control are subjective mea-
sures and participants frequently disagree on the affective
content of videos. Nevertheless, in most cases there is a
reasonable agreement between participants, which can be
seen in the table. Here, we assign a binary class to each

video clip (e.g. low/high arousal/valence/control) based
on the majority opinion of the participants. Video clips
with less than 55% agreement for one of the modalities
(4,5,6,9 and 12) were excluded from this test. Next, we es-
timate the class based on the outputs of the EEG, facial ex-
pression, and feature-level fusion classifiers. This is based
on the per-subject leave-one-video-out cross-validation. As
can be seen from the table, the feature-level fusion per-
forms much better on this task, frequently correcting the
errors of one or both modalities. For valence and control,
a classification rate of 80% and 86.7% are achieved. This
is a strong indication that the gathering and analysis of
implicit responses in large quantities can provide effective
and reliable emotional tags.

Figure 9 shows the classification accuracy for different
numbers of participants. This is the average classification
accuracy over videos for the given number of participants,
determined by averaging over all possible combinations of
the 24 participants in the experiment. It should be noted
that the number of combinations is not the same over the
x-axis, e.g. the result for 12 participants is the average
over 2704156 combinations, while the results for 1 and 23
subjects is the average of only 24 combinations. This ex-
plains the somewhat erratic behaviour at the left and right
edges of the plots. Thus this plot should be interpreted
with care. Nevertheless, a clear advantage can be seen in
aggregating the results from multiple participants.

Surprisingly, it seems the aggregation works better for
the control dimension, perhaps due to the modalities being
more complementary for this target (as is consistent with
gains for this dimension in decision-level fusion). Natu-
rally it is impossible to obtain a perfect classification as
the ground truth is itself subjective and the human anno-
tators themselves do not always agree on the appropriate
class label. In most of the plots above, we see the per-
formance levelling off, for instance for EEG prediction of
valence, it seems that increasing the number of partici-
pants will not increase the performance. For others, the
performance plateau does not seem to have been reached
yet (e.g. face/arousal), and using more participants may
yet increase the results, although it seems highly likely
a plateau exists and a 100% classification rate is not ex-
pected to be achievable, especially given the limited human
agreement.

6. Regression results

Table 7 gives the results for regression based on single
modalities and feature-level fusion. We report the mean
squared error (MSE), the mean absolute error (MAE) and
it standard deviation as well as the coefficient of determi-
nation (R2). R2 is defined as

R2 ≡ 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

, (8)

where yi is the ground truth rating for sample i, ȳ is the
mean ground truth rating over all samples and ŷi is the
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Figure 8: Results for classification on single modalities, feature fusion, and the two best decision fusion methods. Error bars shown correspond
to the standard error of the mean

Arousal Valence Control

Video HA Class EEG Face FlF HA Class EEG Face FlF HA Class EEG Face FlF

1 62% + − + + 100% − − − − 83% − − − −
2 70% + − − − 100% − − − − 91% − + − −
3 83% − − − − 91% + + − + 79% + + + +
7 83% − − − − 83% + + − − 70% + + + +
8 75% − − − − 87% + − − − 87% + − − −

10 70% − − − − 79% + + − + 75% + + + +
11 70% + + + + 95% − − − − 100% − − + −
13 70% + + − + 95% − − − − 70% − − + +
14 66% − − − − 100% − − − − 87% − − − −
15 95% − − − − 79% − − − − 66% + + − +
16 70% + − + − 100% − − − − 87% − − + −
17 100% − − − − 83% − + − − 70% + + + +
18 70% − + − − 95% + − + − 79% + + + +
19 91% − − − − 83% − − − − 58% + + − +
20 58% + − − − 70% + + + + 66% + − + +

Mean human agreement and modality classification rates
Target Human EEG Face Fusion
Arousal 75.5% 66.7% 80.0% 80.0%
Valence 89.3% 80.0% 73.3% 80.0%
Control 77.9% 80.0% 60.0% 86.7%

Table 6: Video class labelling based on human annotation. The assigned class (C) of each video is determined by a majority vote among the
24 human raters, where + indicates the positive and − the negative class. Predicted classes are also given by + and −, where green and red
coloring means correct and incorrect predictions.HA stands for human agreement with the class label C. FlF stands for feature-level fusion.
Also given is the mean human agreement with the class labels and the classification rate for each modality. Trials with less than 55% human
agreement were left out of this study.

rating as estimated by the regressor. An R2-score of 1 in-
dicates a perfect agreement between the regression output
and the ground truth and an R2-score of 0 means the re-
gressor performs the same as taking the sample mean of
the ground truth as the estimate.

As can be seen from the results, except for regression
of valence based on facial expression features, all results
are better than taking the sample mean. In general, as
was the case for classification, the EEG features perform
better than the facial expression features. Unlike in the
classification case, here the feature-level fusion only out-
performs the single modalities in 3 of the 6 tests. This
may be due to the large discrepancy in results between the
EEG and face modalities. In decision-level fusion, similar

to the classification case, W-EQ, W-EST and W-REG
seem to perform the best and the inclusion of training
set performance does not consistently improve the results.
Compared to the classification case, decision-level fusion
performs better for regression, in most cases also better
than feature-level fusion.

7. Conclusions

In this paper, we explore several methods for the fusion
of EEG and facial expression modalities for implicit, affec-
tive tagging. A large dataset containing recordings of 24
subjects each watching 20 video clips is utilized for evalua-
tion of these methods. In a binary classification of arousal,
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Figure 9: The number of participants plotted against the average classification rate over all possible combinations of participants.

Arousal Valence Control

Modality Method R2 MSE MAE(std) R2 MSE MAE(std) R2 MSE MAE(std)

IC
A

EEG .067 .076 .236(.144) .239 .073 .221(.157) .131 .100 .263(.175)
Face .041 .078 .236(.151) .063 .090 .243(.176) .067 .107 .286(.160)

Feature fusion .086 .075 .230(.147) .230 .074 .223(.156) .186 .094 .260(.162)

Decision
fusion

W-EQ .083 .075 .234(.142) .267 .071 .223(.144) .166 .096 .266(.158)
W-EQT .082 .075 .234(.143) .273 .070 .221(.145) .154 .097 .268(.159)
W-EST .074 .076 .236(.142) .276 .070 .220(.146) .157 .097 .266(.162)
W-ESTT .077 .075 .235(.141) .271 .070 .219(.149) .134 .100 .269(.165)
W-REG .083 .075 .234(.141) .284 .069 .219(.146) .168 .096 .264(.161)
W-REGT .086 .075 .234(.141) .279 .069 .218(.149) .148 .098 .267(.164)
M-REG .064 .076 .239(.140) .265 .071 .222(.146) .144 .098 .271(.158)
M-REGT .047 .078 .241(.141) .252 .072 .224(.147) .125 .101 .274(.159)

R
F
E

EEG .178 .067 .216(.143) .229 .074 .222(.159) .188 .093 .242(.187)
Face .011 .081 .234(.161) -.020 .098 .261(.174) .078 .106 .271(.180)

Feature fusion .134 .071 .219(.151) .187 .078 .225(.167) .223 .089 .237(.182)

Decision
fusion

W-EQ .217 .064 .215(.134) .248 .072 .224(.149) .268 .084 .244(.156)
W-EQT .235 .063 .212(.132) .262 .071 .225(.143) .277 .083 .241(.158)
W-EST .212 .064 .213(.137) .261 .071 .220(.151) .260 .085 .244(.160)
W-ESTT .224 .063 .212(.136) .269 .070 .220(.148) .259 .085 .240(.166)
W-REG .219 .064 .212(.137) .268 .070 .219(.151) .269 .084 .242(.159)
W-REGT .231 .063 .211(.135) .276 .070 .219(.148) .270 .084 .239(.165)
M-REG .202 .065 .218(.132) .252 .072 .223(.149) .249 .086 .249(.156)
M-REGT .190 .066 .220(.133) .240 .073 .225(.151) .243 .087 .251(.156)

Table 7: R2-score, MSE and MAE for the single modalities, feature-level fusion and decision-level fusion. R2-scores higher than the best
single-modality result are shown bold.

valence, and control affect dimensions, significant results
are attained for both single modalities. A feature-level
fusion approach is demonstrated to improve upon these
single modality results in most cases. In addition, sev-
eral methods are investigated for decision-level fusion, re-
sulting in some improvement. Results are also reported
for regression. Here, feature-level fusion did not consis-
tently improve upon the single-modality results, though
for decision-level fusion, improvements are more convinc-
ing.

While in most cases fusion improves upon single modal-

ity results and sometimes significantly so, the differences
are small and the number of samples too limited to provide
a definite answer on the benefits of fusion. Unfortunately,
when using EEG, it is often difficult to obtain much larger
sample sizes, due to the limited time participants can use
the equipment before fatigue sets in and effectivity of the
electrode gel becomes an issue. In addition, having partic-
ipants take part in multiple sessions can degrade perfor-
mance as significant differences in brain activity can occur
between sessions, due to mood changes, slightly different
positioning of electrodes, or even the time of day. At the
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same time, it is not desirable to shorten the video duration
too much, as in many cases some time is needed to set a
certain mood. Nevertheless, it is advisable to try and ob-
tain as many samples as possible, and it seems more than
20 (as in the used MAHNOB dataset), should be attain-
able.

In addition, it is advisable to implement a rigorous
stimuli pre-selection methodology, to ensure maximum ef-
fect of the used videos. In most datasets currently avail-
able, stimuli are selected merely at the whim of the re-
searchers compiling the dataset, and not pre-screened in
any way. For the MAHNOB dataset used here, a pre-
screening was performed, with participants rating the vid-
eos online. Nevertheless, the candidates to select were
drawn from a relatively small pool of 21 movies. It would
be a significant step forward if a large stimuli set of affec-
tive videos was available, including affective ratings, in a
similar fashion to the International Affective Picture Sys-
tem (IAPS) [45] for photo’s. Another way to improve re-
sponses to stimuli may be to show them to several subjects
at the same time, as it is common for people to exhibit
stronger facial responses when in a group than alone.

We have also attempted to show the potential of this
method for implicit tagging when aggregating the classi-
fication results of multiple participants. For arousal, va-
lence, and control, video tag classification rates of 80.0%,
80% and 86.7% are attained respectively when aggregating
across all 24 participants. Interestingly, when aggregating
results over participants, large increases in tag classifica-
tion accuracy are shown, in some cases up to 30% higher.
This is a compelling validation of the implicit tagging ap-
proach, where even relatively weak individual results can
generate valuable and reasonably reliable tags. It would
be very interesting to examine this behaviour on a larger
scale, with an expanded, perhaps more specific, set of tags.
Another step forward can be to try and achieve such re-
sults with equipment that can be used outside the labora-
tory, such as low-cost EEG headsets and webcams, and in
a spontaneous setting, in order to further validate the im-
plicit tagging paradigm. Finally, it would be interesting to
investigate whether the resulting tags are truly perceived
as valuable by users.

In relation to this work in particular, an interesting
way forward may be to consider more closely the relation
between AUs and EEG activity at specific timepoints in
the videos. For instance, one could possibly weight eeg
features lower when certain AUs are detected as the as-
sociated muscular acitivity introduces strong noise in the
EEG. Conversely, one could utilize certain EEG artefacts
to add in AU detection, for instance brow motions will
likely correlate with EMG signals from frontal electrodes.
Another interesting direction is to combine this method
with more modalities, for instance the gaze and physio-
logical features already present in the MAHNOB dataset.
Other modalities of interest can be audio and video fea-
tures retrieved from the stimuli videos and any already
present tags for the stimuli video. Fusion results may well

prove more convincing when using more modalities.
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